• Title/Summary/Keyword: eigenvalue approach

Search Result 176, Processing Time 0.027 seconds

Feedback Semi-Definite Relaxation for near-Maximum Likelihood Detection in MIMO Systems (MIMO 시스템에서 최적 검출 기법을 위한 궤환 Semi-Definite Relaxation 검출기)

  • Park, Su-Bin;Lee, Dong-Jin;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1082-1087
    • /
    • 2008
  • Maximum Likelihood (ML) detection is well known to exhibit better bit-error-rate (BER) than many other detectors for multiple-input multiple-output (MIMO) channel. However, ML detection has been shown a difficult problem due to its NP-hard problem. It means that there is no known algorithm which can find the optimal solution in polynomial-time. In this paper, Semi-Definite relaxation (SDR) is iteratively applied to ML detection problem. The probability distribution can be obtained by survival eigenvector out of the dominant eigenvalue term of the optimal solution. The probability distribution which is yielded by SDR is recurred to the received signal. Our approach can reach to nearly ML performance.

In-plane varying bending force effects on wave dispersion characteristics of single-layered graphene sheets

  • Cao, Yan;Selmi, Abdellatif;Tohfenamarvar, Rasoul;Zandi, Yousef;Kasehchi, Ehsan;Assilzahed, Hamid
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.101-114
    • /
    • 2021
  • An analytical investigation has been performed on the mechanical performance of waves propagated in a Single-Layered Graphene Sheet (SLGS) when an In-plane Varying Bending (IVB) load is interacted. It has been supposed that the Graphene Sheet (GS) is located on an elastic medium. Employing a two-parameter elastic foundation, the effects of elastic substrate on the GS behavior are modeled. Besides, the kinematic equations are derived by the means of a trigonometric two-variable refined plate theory. Moreover, in order to indicate the size-dependency of the SLGS, a Nonlocal Strain Gradient Theory (NSGT) was considered. The nonlocal governing differential equations are achieved in the framework of Hamilton's Principle (HP). Also, an analytical approach was used to detect the unknowns of the final eigenvalue equation. Finally, the effects of each parameters using some dispersion charts were determined.

Investigating dynamic response of porous advanced composite plates resting on Winkler/Pasternak/Kerr foundations using a new quasi-3D HSDT

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Yeghnem, Redha;Guerroudj, Hicham Zakaria;Kaci, Abdelhakim;Tounsi, Abdelouahed;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.771-788
    • /
    • 2022
  • This research investigates the free vibration of porous advanced composite plates resting on Winkler/Pasternak/ Kerr foundations by using a new hyperbolic quasi three dimensional (quasi-3D) shear deformation theory. The present theory, which does not require shear correction factor, accounts for shear deformation and thickness stretching effects by parabolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate. In this work, we consider imperfect FG plates with porosities embedded within elastic Winkler, Pasternak or Kerr foundations. Implementing an analytical approach, the obtained governing equations from Hamilton's principle according to FG plates are derived. The closed form solutions are obtained by using Navier technique, and natural frequencies of FG plates are found, for simply supported plates, by solving the results of eigenvalue problems. A comprehensive parametric study is presented to evaluate effects of the geometry of material, mode numbers, porosity volume fraction, Power-law index and stiffness of foundations parameters on free vibration characteristics of FG plates.

Vibration analysis of boron nitride nanotubes by considering electric field and surface effect

  • Zeighampour, Hamid;Beni, YaghoubTadi
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.607-620
    • /
    • 2021
  • In this paper, the vibrations of boron nitride nanotubes (BNNTs) are investigated by considering the electric field. To consider the size effect at nanoscale dimensions, the surface elasticity theory is exploited. The equations of motion of the BNNTs are obtained by applying Hamilton's principle, and the clamped-guided boundary conditions are also considered. The governing equations and boundary conditions are discretized using the differential quadrature method (DQM), and the natural frequency is obtained by using the eigenvalue problem solution. The results are compared with the molecular dynamic simulation in order to validate the accurate values of the surface effects. In the molecular dynamics (MD) simulation, the potential between boron and nitride atoms is considered as the Tersoff type. The Timoshenko beam model is adopted to model BNNT. The vibrations of two types of zigzag and armchair BNNTs are considered. In the result section, the effects of chirality, surface elasticity modulus, surface residual tension, surface density, electric field, length, and thickness of BNNT on natural frequency are investigated. According to the results, it should be noted that, as an efficient non-classical continuum mechanic approach, the surface elasticity theory can be used in scrutinizing the dynamic behavior of BNNTs.

A WFE and hybrid FE/WFE technique for the forced response of stiffened cylinders

  • Errico, Fabrizio;Ichchou, M.;De Rosa, S.;Bareille, O.;Franco, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • The present work shows many aspects concerning the use of a numerical wave-based methodology for the computation of the structural response of periodic structures, focusing on cylinders. Taking into account the periodicity of the system, the Bloch-Floquet theorem can be applied leading to an eigenvalue problem, whose solutions are the waves propagation constants and wavemodes of the periodic structure. Two different approaches are presented, instead, for computing the forced response of stiffened structures. The first one, dealing with a Wave Finite Element (WFE) methodology, proved to drastically reduce the problem size in terms of degrees of freedom, with respect to more mature techniques such as the classic FEM. The other approach presented enables the use of the previous technique even when the whole structure can not be considered as periodic. This is the case when two waveguides are connected through one or more joints and/or different waveguides are connected each other. Any approach presented can deal with deterministic excitations and responses in any point. The results show a good agreement with FEM full models. The drastic reduction of DoF (degrees of freedom) is evident, even more when the number of repetitive substructures is high and the substructures itself is modelled in order to get the lowest number of DoF at the boundaries.

Diffraction Analysis of Multi-layered Grating Structures using Rigorous Equivalent Transmission-Line Theory (정확한 등가 전송선로 이론을 사용한 다층 격자 구조의 회절특성 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.261-267
    • /
    • 2015
  • The eigenvalue problems involving the diffraction of waves by multi-layered grating configurations can be explained by rigorous modal expansion terms. Such a modal solution can be represented by equivalent transmission-line networks, which are generalized forms of simple conventional circuits. This approach brings considerable physical insight into the grating diffraction process of the fields everywhere. In particular, the transmission-line representation can serve as a template for computational algorithms that systematically evaluate dispersion properties, radiation effects and other optical characteristics that are not readily obtained by other methods. To illustrate the validity of the present rigorous approach, the previous research works are numerically confirmed and the results agree well each other.

Convergence Decision Method Using Eigenvectors of QR Iteration (QR 반복법의 고유벡터를 이용한 수렴 판단 방법)

  • Kim, Daehyun;Lee, Jingu;Jeong, Seonghee;Lee, Jaeeun;Kim, Younglok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.868-876
    • /
    • 2016
  • MUSIC (multiple signal classification) algorithm is a representative algorithm estimating the angle of arrival using the eigenvalues and eigenvectors. Generally, the eigenvalues and eigenvectors are obtained through the eigen-analysis, but this analysis requires high computational complexity and late convergence time. For this reason, it is almost impossible to construct the real-time system with low-cost using this approach. Even though QR iteration is considered as the eigen-analysis approach to improve these problems, this is inappropriate to apply to the MUSIC algorithm. In this paper, we analyze the problems of conventional method based on the eigenvalues for convergence decision and propose the improved decision algorithm using the eigenvectors.

Damage detection in truss structures using a flexibility based approach with noise influence consideration

  • Miguel, Leandro Fleck Fadel;Miguel, Leticia Fleck Fadel;Riera, Jorge Daniel;Menezes, Ruy Carlos Ramos De
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.625-638
    • /
    • 2007
  • The damage detection process may appear difficult to be implemented for truss structures because not all degrees of freedom in the numerical model can be experimentally measured. In this context, the damage locating vector (DLV) method, introduced by Bernal (2002), is a useful approach because it is effective when operating with an arbitrary number of sensors, a truncated modal basis and multiple damage scenarios, while keeping the calculation in a low level. In addition, the present paper also evaluates the noise influence on the accuracy of the DLV method. In order to verify the DLV behavior under different damages intensities and, mainly, in presence of measurement noise, a parametric study had been carried out. Different excitations as well as damage scenarios are numerically tested in a continuous Warren truss structure subjected to five noise levels with a set of limited measurement sensors. Besides this, it is proposed another way to determine the damage locating vectors in the DLV procedure. The idea is to contribute with an alternative option to solve the problem with a more widespread algebraic method. The original formulation via singular value decomposition (SVD) is replaced by a common solution of an eigenvector-eigenvalue problem. The final results show that the DLV method, enhanced with the alternative solution proposed in this paper, was able to correctly locate the damaged bars, using an output-only system identification procedure, even considering small intensities of damage and moderate noise levels.

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.

Self-Calibration for Direction Finding in Multi-Baseline Interferometer System (멀티베이스라인 인터페로미터 시스템에서의 자체 교정 방향 탐지 방법)

  • Kim, Ji-Tae;Kim, Young-Soo;Kang, Jong-Jin;Lee, Duk-Yung;Roh, Ji-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.433-442
    • /
    • 2010
  • In this paper, self-calibration algorithm based on covariance matrix is proposed for compensating amplitude/phase mismatch in multi-baseline interferometer direction finding system. The proposed method is a solution to nonlinear constrained minimization problem which dramatically calibrate mismatch error using space sector concept with cost function as defined in this paper. This method, however, has a drawback that requires an estimated initial angle to determine the proper space sector. It is well known that this type of drawback is common in nonlinear optimization problem. Superior calibration capabilities achieved with this approach are illustrated by simulation experiments in comparison with interferometer algorithm for a varitiety of amplitude/phase mismatch error. Furthermore, this approach has been found to provide an exceptional calibration capabilities even in case amplitude and phase mismatch are more than 30 dB and over $5^{\circ}$, respectively, with sector spacing of less than $50^{\circ}$.