• Title/Summary/Keyword: eigen-analysis

Search Result 319, Processing Time 0.026 seconds

Seismic Analysis of Horizontal-Type Multi-Stage Centrifugal Pump using Finite Element Method (유한요소법을 이용한 수평형 다단원심펌프의 내진해석)

  • 조진래;이홍우;김민정;하세윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.790-796
    • /
    • 2003
  • As a fluid machinery for piping liquid in the reactor cooling system, multi-stage centrifugal pump requires the structural dynamic stability against external dynamic excitation. This paper is concerned with the finite element analysis of its eigen behavior and seismic response to RRS(Required Response Spectrum) curves in the case of SSE (Safe Shutdown Earthquake). Through the finite element analysis, the major vibration characteristics of multi-stage centrifugal pump(MSCP) are investigated and seismic qualification based on the IEEE codes is executed. The numerical results show that the MSCP used in this study has enough seismic strength.

A study on the Approximate Eigen Modes and Application of Spherical Domes (구형 돔의 근사고유모드 작성 및 응용에 관한 연구)

  • 한상을;권택진;최옥훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.192-199
    • /
    • 1997
  • The purpose of this paper is to get a powerful tool for response analysis of a spherical dome subjected to dynamic excitation based on mathematically analytical method, i. e., the Galerkin procedure in modal analysis, with sufficient accuracy and practicality. At first, this paper provides an approximate solution of eigen modes, which has sufficient accuracy and praticallity for response analysis in symmetric and antisymmetric state. In the second stage of this paper, response analysis of a dome subjected to horizontal earthquakes is executed as the application of these approximate modes. Many important response characteristics may manifest themselves through parametric survey of material and geometric properties.

  • PDF

Eigen-analysis of SSR in Power Systems with Modular Network Model Equations (Modular 네트워크 모델 구성에 의한 전력계통 SSR 현상의 고유치해석)

  • Nam, Hae-Kon;Kim, Yong-Gu;Shim, Kwan-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1239-1246
    • /
    • 1999
  • This paper presents a new algorithm to construct the modular network model for SSR analysis by simply applying KCL to each node and KVL to all branches connected to the node sequentially. This method has advantages that the model can be derived directly from the system data for transient stability study and turbine/generator shaft model, the resulted model in the form of augmented state matrix is very sparse, and thus efficient SSR study of a large scale system becomes possible. The proposed algorithm is verified with the IEEE First and Second Benchmark models.

  • PDF

A Study on the Analysis of Squeal Noise for Brake Design (저소음 브레이크 설계를 위한 스퀼 노이즈 해석기법 연구)

  • Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul;Kim, Hyun-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.320-325
    • /
    • 2006
  • The phenomenon of squeal in disc brakes has been, and stin is, a problem for the automotive industry. Extensive research has been done in an attempt to understand the mechanisms that cause it and in developing design procedures to reduce it to make vehicles more comfortable. In this paper, the study on squeal noise of disc brake is performed using complex eigen-value analysis, The first part describes the chassis-dynamometer and the testing procedure, and second part explains how the analysis is performed and shows some of the results from typical squeal tests. Finally, to reduce squeal nose of disc brake is investigated by the effects of brake design parameter.

  • PDF

A Comparitive Study on the Shear Buckling Characteristics of Trapezoidal and Sinusoidal Corrugated Steel Plate Considering Initial Imperfection (제형 및 사인형 주름 강판의 초기 불완전 형상을 고려한 전단 좌굴 특성 비교)

  • Seo, Geonho;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • This paper conducted a comparative analysis of the shear buckling characteristics of trapezoidal and sinusoidal corrugated steel plates considering of their initial imperfection. Initial imperfection refers to the state where the shape of the corrugated plate is initially not perfect. As such, an initially imperfect shape was assumed using the eigen buckling mode. To calculate the buckling stress of corrugated steel plates, the linear buckling analysis used a boundary condition which was applied to the plate buckling analysis. For the comparison of trapezoidal and sinusoidal corrugation, the shape parameters were assumed using the case where the length and slope of each corrugation were the same, and the initial imperfection was considered to be from 0.1% to 5% based on the length of the steel plate. Here, for the buckling analysis, ANSYS, a commercial FEA program, was used. From the results of buckling analysis, the effect of overall initial imperfection showed that the larger the initial imperfection, the lower the buckling stress. However, in the very thin model, interaction or local buckling was dominant in the perfect shape, and in this case, the buckling stress did not decrease. Besides, the sinusoidal model showed higher buckling stress than the trapezoidal one, and the two corrugation shapes decreased in a similar way.

Eigen-Analysis Based Super-Resolution Time Delay Estimation Algorithms for Spread Spectrum Signals (대역 확산 신호를 위한 고유치 해석 기반의 초 분해능 지연 시간 추정 알고리즘)

  • Park, Hyung-Rae;Shin, Joon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1013-1020
    • /
    • 2013
  • In this paper the super-resolution time delay estimation algorithms based on eigen-analysis are developed for spread spectrum signals along with their comparative performance analysis. First, we shall develop super-resolution time delay estimation algorithms using the representative eigen-analysis based AOA (angle-of-arrival) estimation algorithms such as MUSIC, Minimum-Norm, and ESPRIT, and apply them to the ISO/IEC 24730-2.1 real-time locating system (RTLS) employing a direct sequence spread spectrum (DS-SS) technique to compare their performances in RTLS environments. Simulation results illustrate that all the three algorithms can resolve multipath signals whose delay differences are even smaller than the Rayleigh resolution limit. Simulation results also show that MUSIC and Minimum-Norm provide a similar performance while ESPRIT is inferior to both algorithms in RTLS environments.

A Study on the Dynamic Characteristics of Tension Structures according to Initial Tension Forces and Equilibrium Shape (초기인장력과 평형형상을 고려한 인장구조물의 동적 특성에 대한 연구)

  • Chang, Dong Il;Kim, Hak Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.73-83
    • /
    • 1998
  • Considering dynamic behaviors according to initial tension forces, geometric nonlinearity and the effect of higher eigen modes to participate in dynamic behaviors increase as initial tension forces decrease, and from phase portrait we can realize that period attractors are produced in many area with complexity. If initial tension forxes increase, difference between linear and nonlinear solutions will decrease and the first eigen mode dominate the dynamic behaviors and observing phase portrait, period attractors appear in certain area regularly. These results may offer meaningful informations to nonlinear dynamic analysis using modal reduction methods such as Lanczos modal analysis. And actually nonlinear dynamic analysis needs very large computational efforts. So, if we determine the number of eigen modes to take part in modal analysis corresponding to initial tension forces we will get more accurate data close to exact nonlinear dynamic solutions.

  • PDF

A Study for the Reliability Based Design Optimization of the Automobile Suspension Part (자동차 현가장치 부품에 대한 신뢰성 기반 최적설계에 관한 연구)

  • 이종홍;유정훈;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2004
  • The automobile suspension system is composed of parts that affect performances of a vehicle such as ride quality, handling characteristics, straight performance and steering effort, etc. Moreover, by using the finite element analysis the cost for the initial design step can be decreased. In the design of a suspension system, usually system vibration and structural rigidity must be considered simultaneously to satisfy dynamic and static requirements simultaneously. In this paper, we consider the weight reduction and the increase of the first eigen-frequency of a suspension part, the upper control arm, especially using topology optimization and size optimization. Firstly, we obtain the initial design to maximize the first eigen-frequency using topology optimization. Then, we apply the multi-objective parameter optimization method to satisfy both the weight reduction and the increase of the first eigen-frequency. The design variables are varying during the optimization process for the multi-objective. Therefore, we can obtain the deterministic values of the design variables not only to satisfy the terms of variation limits but also to optimize the two design objectives at the same time. Finally, we have executed reliability based optimal design on the upper control arm using the Monte-Carlo method with importance sampling method for the optimal design result with 98% reliability.

A Study on the Stiffness Locking Phenomena and Eigen Problem in a Curved Beam (곡선보의 강선 과잉 현상과 고유치에 관한 연구)

  • 민옥기;김용우;유동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.310-323
    • /
    • 1990
  • A three-noded, with three degree-of-freedom at each node, in-plane curved beam element is formulated and employed in eigen-analysis of constant curvature beam. The conventional quadratic shape functions used in a three noded C .deg. type curved beam element produce such an undesirable large stiffness that a significant error is introduced in displacements and stresses. These phenomena are called 'Stiffness Locking Phenomena', which result from spurious strain energy due to inappropriate assumptions on independent isoparametric quadratic interpolation functions. Stiffness locking phenomena can be alleviated by using modified interpolation functions which get rid of spurious constraints of conventional interpolation functions. Eigenvalues and their modes as well as displacements and stresses may be locked because they are related to stiffness. Using modified curved beam element in eigenvalue problem of cantilever and arch, the property and performance of modified curved beam element are examined by numerical experimentations. In these eigen-analyses, mass matrices are calculated by using both modified and unmodified curved beam element, are compared with theoretical solutions. These comparisons show that the performance of the modified curved beam element is better than that of the unmodified curved beam element.

A Study on the Evaluation Method of the Operation Stability of a Torque Converter Mounted on Industrial Vehicle (산업차량용 토크컨버터의 작동 안정성 평가 방법에 대한 연구)

  • Kim, Beom-Soo;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • This paper presents the induced mathematical modeling equations for evaluating the operation stability with automatic transmission of heavy duty vehicle. This theoretical approach indicates that linearized governing equations of system can be converted into eigen-value problems. if the eigen-value has positive number, we can predict the engine operating point locates an unstable operating region. To be a stable state, the unstable operating point diverges toward a stable point which is able to maintain uniform velocity. Based on the previous theoretical analysis, we carry out dynamic simulation to show the behavior of engine operating point and torque converter in transient state. As a result of the dynamic simulation, the suggested theoretical method is found to be reasonable for evaluating the operation stability of a torque converter. In addition, the numerical results explain the engine stops and fluctuating phenomenon in reality.