• Title/Summary/Keyword: egg size

Search Result 424, Processing Time 0.022 seconds

Preparation of $^{99m}Tc-HYNIC-PEG-liposomes$ for Imaging of the Focal Sites of Infection (농양 진단을 위한 $^{99m}Tc-HYNIC-PEG-liposomes$의 제조)

  • Hong, Jun-Pyo;Awh, Ok-Doo;Kim, Hyun-Suk;Lee, Eun-Sook;Lee, Tae-Sup;Choi, Tae-Hyun;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.333-343
    • /
    • 2002
  • Purpose: A new linker, hydrazino nicotinamide (HYNIC), was recently introduced for labelling of liposome with $^{99m}Tc$. In this study we synthesized HYNIC derivatized PEG (polyethylene glycol)-liposomes radiolabeled with $^{99m}Tc$. Materials and Methods: In order to synthesize HYNIC-DSPE (distearoyl phosphatidyl ethanolamine) which is a crucial component for $^{99m}Tc$ chelation, first of all succinimidyl 6-BOC-hydrazinopyridine-3-carboxylic acid was synthesized from 6-chloronicotinic acid by three sequential reactions. A DSPE derivative of succinimidyl 6-BOC-hydrazinopyridine-3-carboxylic acid was transformed into HYNIC-DSPE by HCI/dioxane. HYNIC-PEG-liposomes were prepared by hydration of the dried lipid mixture of EPC (egg phosphatidyl choline): PEG-DSPE : HYNIC-DSPE:cholesterol (1.85:0.15:0.07:1, molar ratio). The HYNIC-PEG-liposomes were labeled with $^{99m}Tc$ in the presence of $SnCl_2{\cdot}2H_2O$ (a reducing agent) and tricine (a coligand). To investigate the level of in vivo transchelation of $^{99m}Tc$ in the liposomes, the $^{99m}Tc$-HYNiC-PES-liposomes were incubated with a molar excess of DTPA, cysteine or glutathione solutions at $37^{\circ}C$ for 1 hour. The radiolabeled liposomes were also incubated in the presence of human serum at $37^{\circ}C$ for 24 hours. Results: 6-BOC-hydrazinopyridine-3-carboxylic acid was synthesized with 77.3% overall yield. The HYNIC concentration in the PEG-coated liposome dispersion was 1.08 mM. In condition of considering the measured liposomal size of 106 nm, the phospholipid concentration of $77.5\;{\mu}mol/m{\ell}$ and the liposomal particle number of $5.2{\times}10^{14}$ liposomes/ml, it is corresponded to approximate 1,250 nicotinyl hydrazine group per liposome in HYNIC-PEG-liposome. The removal of free $^{99m}Tc$ was not necessary because the labeling efficiency were above 99%. The radiolabeled liposomes maintained 98%, 96% and 99%, respectively, of radioactivity after incubation with transchelators. The radiolabeled liposomes possessed above 90% of the radioactivity in serum. Conclusion: These results suggest that the HYNIC can be synthesized easily and applied in labelling of PEG-liposomes with $^{99m}Tc$.

Notes on the Status and Conservation of Callipogon Relictus Semenov in Korea (장수하늘소 현황 및 보전방안)

  • An, Seung Lak
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.260-279
    • /
    • 2010
  • The analysis on bibliography and field investigation of Callipogon relictus Semenov, 1898 (Korean natural monument number 218) shows that the size varies from country to country, and Korean specimens, for which male is 85~120mm and female is 65~85mm, are found to be the largest. The average diameter and length of egg are 2.60mm and 6.72mm respectively. The larva has milky color and is about 100~150mm in length. The pupa is nearly 70~110mm. An adult generally appears from June to September in Korea in the broadleaf forest of lowland, whereas it appears from June to July in China. It is known that the pupa largely feed on the old tree trunk of Carpinus laxiflora (Siebold & Zucc.) blume in Korea, but no such data have been reported in China and Russia, showing differences in host plants. While the larva period is not exactly known in Korea, it is reported to be two years in China. It appears that the species inhabits in very limited regions of approximately between geographical latitude $37.5^{\circ}{\sim}47.8^{\circ}$ and longitude $126^{\circ}{\sim}140^{\circ}$ including Korea, China and Russia. To conserve the long-horned beetle in Korea, this research drew out following some conclusions through analyzing the references and field survey data. First, it need to perform precise survey on the natural environment of occurring and collected area or place including host plant kinds, temperate, humidity, latitude, longitude etc. Second, habitat region must be designated as a restricted development area, and it need to exclude or reduce the damage factors to prosper reproduction of the species. Third, it is necessary to keep loosing cautiously artificial breeding individuals in the reported sites, not disturbing scope of natural populations. Fourth, it needs to educate or publicize many people importance and value of this species through many methods.

Malacological Studies on Parafossarulus manchouricus(Gastropoda: Prosobranchia) in Korea (한국산(韓國産) 왜우렁(Parafossarulus manchouricus)의 패류학적(貝類學的) 연구(硏究))

  • Chung, Pyung-Rim
    • The Korean Journal of Malacology
    • /
    • v.1 no.1
    • /
    • pp.24-50
    • /
    • 1985
  • Five different populations of Parafossarulus manchouricus (Chongpyung, Chinju and Kunsan, Korea; and Japan and Taiwan), a population of Bitbynia (Gabbia) misella (Gongju, Korea) and two different populations of Bithynta tentaculata (Michigan, U.S.A. and Bodensee, Germany) were compared in regard to eff-laying characteristics, morphology, chromosome cytology, natural infections of parasites and ecology of habitats. A satisfactory culture method was devised for laboratory rearing of the snails. Tropical fish food (Terra SML) and powdered green leaves (Ceralife) were used as the main food sources for the snails. Benthic diatoms such as Navicula and Gomphonema from the periphyton were also essential for satisfactory growth, especially for the baby snails. The aquaria were stabilized with small stones from a local stream. Young P. manchouricus snails grew to adult size in about 54 days after hatching. They laid eggs 150-156 days after hatching. The whole cycle (birth to egg-laying) took approximately 5 months. The three species of bithyniid snails are iteroparous and lay eggs once a year. There were no major morphological differences in the shells of genera or subgenera studied here. They did exhibit the following rather minor differences. The shell of Parafossarulus has spirally raised ridges, and its apex is usually eroded; the other two genera lack these characteristics. The shell of B. (Gabbia) misella is small, nor exceeding 7.5 mm in length, while the shells of the other two species are larger, being more than 10 mm in length. Scanning electron microscopy (SEM) of the protoconch of P. manchouricus reveals nearly smooth sculpture with small, low, spiral wrinkles. This sculpture is quite different from that of the Hydrobiidae, a family to which the bithyniids are frequently assigned. Scanning electron microscopy of the radulae of the three bithyniid species showed that their radular morphologies are very similar, but there are some small differences, which may be species-specific. There were some statistical differences in shell heights between the Korean and the other populations of P. manchouricus, and between this species and the other two bithyniids as well. The shell differences between the several populations of Korean P. manchouricus may be related to environment. Edtails of the chromosome cycle of these bithyniid snails are similar to those reported for other snails. No specific differences were observed in the chromosome cycle between the various species and populations of snails employed in this study. Reporred for the first time in molluscs are two darkly stained "nucleolar organizers" during pachyterne stages of meiosis. Two different chromosome numbers were observed in the three bithyniid species: n=17 in B. tentaculata and P. manchouricus, and n=18 in B. (G.) misella. no sex chromosomes or supernumerary chromosomes were seen. There were no morphological differences in karyotypes of three Korean strains of P. manchouricus. The infection rates of cercariae of Clonorchis sinensis in Chinju and Kunsan strains of P. manchouricus were 0.14% and 1.25%, respectively. However, Clonorchis cercariae were found in Chongpyung strain of P. manchouriceu and Gongju strain of B. (G.) misella. The habitats of P. manchouricus around Jinyang Lake were relatively clean without any heavy pollution of aquatic microorganisms and organic materials during the period of this study. The levels of dissolved oxygen (D.O.) and biochemical oxygen demand (B.O.D.) of the water specimens sampled from the study areas ranged from 6.0 to 9.6 ppm and from 0.4 to 1.6 ppm, respectively. Eight metalic constituents from the water samples were also assayed, and all metalic ions detercted were remarkably low below the legal criteria. However, calcium ion in the water samples from the habitats of P. manchouricus was considerably higher than others.

  • PDF

THE FOOD AND GROWTH OF THE LARVAE OF THE ARK SHELL ANADARA BROUGHTONI SCHRENCK (피조개의 먹이와 성장)

  • Yoo Sung Kyoo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1969
  • The larvae of the ark shell Anadare broughtoni(Schrenck) were grown at room temporature (approximately $20.4^{\circ}C$), and fed laboratory-cultured Cyclotella nana. The egg of the ark shell produced in the laboratory measured about $54.9\mu$ in diameter. The embryos gradually developed into larvae up to $110.8\mu$ shell length, $83.9\mu$ shell height and with shell breadth of $58.2\mu$ even in the absence of the algal food. Beyond this sire, however, the growth of the larvae was considerably retarded. The larvae showed better growth rate when they were fed the algal food two days after spawning, i. e., early straight-hinge stage. Daily rate of food consumption varies according to the larval sizes. But the rate increases considerably when the larvae begin to form umbos. In general the rate Is indicated by the following formula: $Y=0.0025161\;X^{2.76459}$. The growth experiments of the larvae indicate that the efficiency of food conversion was higher when fed centrifuged food. Regarding to the difference in the slopes of growth curve, centrifuged food showed better growth rate as compared to those grown with the non-centrifuged food. The smaller the larval size, the greater will be the difference in growth. The larvae began settling when they reathed 261.7 to $289.6\;{\mu}$ in shell length, 199.2 to $221.7\mu$ in shell height and 147.6 to $170.8\mu$ in shell breadth. The time which elapsed from spawning to the larval settlement was about 28 days. The mean growth of the larvae is indicated with regression line and exponential curve equations as follows. Regression line shell length. 94.3 to $133.9\mu$ : Y==85.22857+3.35000X 141.6 to $269.3\mu$: Y=10.83036X-36.05357 296.8 to $373.2\mu$ : Y=19.10000X-279.30000 shell height: 72.7 to $89.7\mu$ : Y=67.11429+2.15714X 108.4 to $206.4\mu$ : Y=8.31607X-27.45357 228.6 to $282.1\mu$: Y=173.46700+13.37500X shell breadth: 45.3 to $77.8\mu$ : Y=38.08510X+2.73570X 87.4 to $157.7\mu$: Y=5.77320X-5.99640 175.4 to $214.0\mu$: Y=19.65000X-114.13300 Exponential curve shell length. 94.3 to $373.2\mu$: Y=72.45 $e^{0.04697x}$ shell height: 72.7 to $282.1\mu$: Y=54,96 $e^{0.04720x}$ shell breadth: 45.3 to $214.0\mu$ : Y=39.82 $e^{0.04927x}$ The relationships between the shell length and shell height and between the shell length and shell breadth are indicated as follows- shell height: 72.7 to $98.7\mu$ : Y=12.87780+0.63817X 108.4 to $206.4\mu$ : Y=0.90220+0.76456X 228.6 to $282.1\mu$ : Y=25.02630+0.69156X shell breadth: 45.3 to $77.8\mu$:Y=0.81373Xx-31.18914 87.4 to $157.7\mu$ : Y=13.37549+0.53230X 175.4 to $214.0\mu$: Y=30.24328+0.49545X

  • PDF