• Title/Summary/Keyword: egg DNA

Search Result 118, Processing Time 0.033 seconds

Follow-up of Exogenous DNA by Sperm-mediated Gene Transfer via Liposome

  • Cho, Hwang-Yun;Chung, Ki-Hwa;Kim, Jin-Hoi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1412-1421
    • /
    • 2002
  • To examine the feasibility of using a sperm vector system for gene transfer, we have investigated the binding and the uptaking of foreign DNA into the sperm nucleus by PCR, in situ hybridization and LSC. We have also examined the transportation of exogenous DNA into oocytes by immunofluorescene via PCR. Sperm cells were incubated with DNA/liposome complexes (1:4 ratio) in fertilization medium with BSA or without BSA. In situ hybridization demonstrated that the transfection rate of sperm cells with and without BSA was 41 and 68% respectively, when the cells were treated with liposome/DNA complexes and 13% for DNA alone. LSC analysis showed that the binding of exogenous DNA was greatly reduced by DNase I treatment which digests DNA bound onto spermatozoa, suggesting that some of the DNA was internalized into the sperm membrane. To find out whether transfected DNA was internalized into sperm intracytomembrane, sperm DNA was amplified by inverse PCR. No PCR products were detected from sperm cells, indicating that the foreign DNA was simply bound onto the sperm membrane. To investigate transfer rates of exogenous DNA into oocytes via sperm cells, we used immunofluorescene method to follow the distribution of foreign DNA via spermatozoa: a few exogenous DNA was located in the cytoplasm of early embryos (13/60, 21.7% for DNA+/liposome+/BSA) and was not located in the pronucleus and/or nucleus. These results suggest that most of the transfected sperm cells could carry the foreign DNA into the egg by in vitro fertilization, but that the transferred DNA is degraded in the developing embryos without stable integration into the zygote genome. Therefore, we have directly injected with transfected sperm cell into oocyte cytoplasm and observed that some of the exogenous DNA was detected in preimplantation embryonic cytoplasm and expressed at preimplantation stages, suggesting that exogenous DNA in early zygote has their integrity. In this study, we have not identified a noble mechanism that interfering transportation of foreign DNA into zygote genome via spermatozoa. Our data, however, demonstrated that inverse PCR and immunofluorescene methods would be used as a new tool for follow-up of gene distribution in oocyte via sperm cells.

Purification and Characterization of a Keratinase from Bacillus licheniformis Strain for Degradation of Egg Shell Membrane (낙각막 분해를 위한 Bacillus licheniformis로 부터 Keratinase의 정제 및 특성)

  • 전태욱;박기문
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.259-266
    • /
    • 2002
  • The egg shell membrane degrading isolated from soil was identified as Bacillus licheniformis by 16S rDNA identification method. A keratinase was isolated from the Baciilu licheniformis culture. DEAE-cellulose ion-exchange and Sephadex C-75 gel chromatograhies were used to purify the enzyme. The specific activity was increased 17.3-fold by the purification procedures. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and Sephadex G-75 chromatography indicated that the purified keratinase was monomeric and had a molecular weight of 65 kDa. The enzyme showed optimum activity at pH 9.0, and was stable above pH 9.0. The optimum temperature was 50$\^{C}$ and the enzyme was stable in the temperature ranges from 20$\^{C}$ to 50t. By the addition of 1 mM and 10 mM FeSO4, the activities of the enzyme were increased to 111$\pm$4.6% and 133$\pm$3.79%, respectively. The keratinase was an alkaline serine pretense because it was inhibited only by phenylmethylsulfonylfluorice (PMSF).

Relationship between Differential Gene Expression in Ovary and Heterosis of Egg Number Traits in a Chicken Diallel Cross

  • Wang, Hui;Sun, Dong-Xiao;Yu, Ying;Wang, Dong;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.767-771
    • /
    • 2005
  • In order to understand the molecular basis of chicken heterosis in reproduction traits, mRNA differential display (DDRT-PCR) methods were used to analyze the differential gene expression of ovary tissue between hybrids and their parental lines in a 4${\times}$4 diallel cross, involving 4 chicken breeds, which were White Plymouth Rock (E), CAU Brown (D), Silkies (C) and White Leghorn (A). Total of 331 differential displayed cDNA bands from 1,161 were displayed in the 4${\times}$4 diallel cross combinations with 30 pairs of primers, which shows the differences of gene expression between hybrids and their parental lines were very obvious in quantity and quality. Seven types of differential expression patterns were found: Co-dominance expressed pattern (T1), under-expression of parental fragments in hybrids (T2), over-expression of parental fragments in hybrids (T3), hybrid-absence expressed pattern (T4), single parentspecific expressed pattern (T5), dominant expression fragments of single parent in hybrids (T6), hybrid-specific expressed pattern (T7). Correlation analysis indicated that there were significant correlations between the pattern of T3 and the heterosis percentage of egg number of 32-week and 42-week old chickens(p<0.01), while there were negative significant correlations between the pattern of T7 and the heterosis percentage of egg number of 32-week and 42 week-old birds (p<0.01).

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.97-97
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Protective and Anti-Pathology Effects of Sm Fructose-1,6-Bisphosphate Aldolase-Based DNA Vaccine against Schistosoma mansoni by Changing Route of Injection

  • Saber, Mohamed;Diab, Tarek;Hammam, Olft;Karim, Amr;Medhat, Amina;Khela, Mamdouh;El-Dabaa, Ehab
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study aimed to evaluate the efficacy of fructose-1,6-bis phosphate aldolase (SMALDO) DNA vaccination against Schistosoma mansoni infection using different routes of injection. The SMALDO has been cloned into the eukaryotic expression vector pcDNA3.1/V5-His TOPO-TA and was used in injecting Swiss albino mice intramuscularly (IM), subcutaneously (SC), or intraperitoneally (IP) ($50{\mu}g/mouse$). Mice vaccinated with non-recombinant pcDNA3.1 served as controls. Each group was immunized 4 times at weeks 0, 2, 4, and 6. Two weeks after the last booster dose, all mice groups were infected with 80 S. mansoni cercariae via tail immersion. At week 8 post-infection, animals were sacrificed for assessment of parasitological and histopathological parameters. High anti-SMALDO IgG antibody titers were detected in sera of all vaccinated groups (P<0.01) compared to the control group. Both the IP and SC vaccination routes resulted in a significant reduction in worm burden (46.2% and 28.9%, respectively, P<0.01). This was accompanied by a significant reduction in hepatic and intestinal egg counts (41.7% and 40.2%, respectively, P<0.01) in the IP group only. The number of dead eggs was significantly increased in both IP and IM groups (P<0.01). IP vaccination recorded the highest significant reduction in granuloma number and diameter (54.7% and 29.2%, respectively, P<0.01) and significant increase in dead miracidia (P<0.01). In conclusion, changing the injection route of SMALDO DNA vaccination significantly influenced the efficacy of vaccination. SMALDO DNA vaccination via IP route could be a promising protective and antipathology vaccine candidate against S. mansoni infection.

Effect of Monothioglycerol on ROS Inhibition, Mitochondrial Activity, and DNA Integrity in Frozen-thawed Miniature Pig Sperm (Monothiolglycerol이 동결 융해 후 미니돼지 정자의 활성산소 억제, 미토콘드리아 활성 그리고 DNA Integrity에 미치는 영향)

  • Park, Soo-Jung;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.265-271
    • /
    • 2013
  • Cryopreservation and in vitro fertilization (IVF) protocols are important in genetic studies and applications to transgenic animals. Various studies about boar sperm cryopreservation have been studied for a long time. Those were about the use of extenders, the choice of sugars, the cooling and warming rates. The factors that influence the boar sperm are the dramatic changes in temperatures, osmotic and toxic stresses, and reactive oxygen species (ROS) generation. Among these factors, ROS generation is the main damage to DNA which is a principal genetic material and the most important for the practical applications. So we wondered whether ROS generation could be reduced. In previous study, monothioglycerol (MTG) was essential for the culture of embryo stem cells. Therefore we added MTG in the freezing extender based on lactose-egg yolk (LEY) with trehalose. For the assessment of the frozen-thawed sperm, we focused onmotility, membrane integrity and DNA damage. First, we used a computer-aided sperm analysis system for overall conditions of sperm such as motility and viability. Then we performed the sperm chromatin structure assay for DNA integrity and hypo-osmotic swelling test for membrane integrity. And our result showed the existence of MTG in the freezing extender caused less damage to DNA and higher motility in frozen-thawed boar sperm. Also we checked a relative antioxidant activity of MTG in modified Modena B extender. We concluded that this reagent can activate sperm mitochondria at MTG $0.2{\mu}M$, contribute to sperm motility and DNA integrity but there was no significant difference on membrane integrity. Also antioxidant activity of MTG in modified Modena B extender was proved.

Study on Antitumor Activity of Samiyeongeontanggamibang(SYTG) (사미연견탕가미방(四味軟堅湯加味方)이 항암(抗癌) 및 항전이(抗轉移) 효과(效果)에 미치는 영향)

  • Bae, Moon-Yong;Kang, In-Cheol;Kim, Sung-Hoon
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.5 no.1
    • /
    • pp.33-46
    • /
    • 1999
  • To evaluate the antitumor and antimetastatic effects of Samiyeongeontanggamibang(SYTG), We have examined whether SYTG can inhibit the growth of several tumor cell lines, tumor cell adhesion, experimental tumor metastasis and increase survival rate of tumor-bearing mice by inhibition of DNA topoisomrase activity. The results were obtained as follows: 1. SYTG extracts revealed an efficient cytotoxicity against A549, SK-OV-3, B16-F10, and SK-MEL-2 cell lines. 2. SYTG extracts inhibited DNA topo-isomerase I from calf thymus. 3. The T/C% in S-180 bearing ICR mice treated with SYTG was 115.8% 4. SYTG extracts significantly inhibited adhesion of A549 cell to complex extracellular matrix. 5. In pulmonary colonization assay, SYTG suppressed lung metastases in tumor cell-injected mice. 6. In CAM assay, SYTG extracts inhibited angiogenesis at $15{\mu}g/egg$ concentration as compared with control. These results suggested that SYTG extracts might be a potent inhibitor of cancer.

  • PDF

Effect of the Treadmill Exercise and the Intake of DNA and Crude Catechin (from Puerariae thunbergiana Roots) on the Body Fat Composition and the Antioxidant Activity in Rats (Treadmill 운동과 DNA 및 칡 Catechin 섭취가 흰쥐 생체내 지방조성과 항산화 활성에 미치는 영향)

  • 이치호;조진국;이은정;손영희;남혜영;최일신
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • Rats(Sprague-Dawley) were randomly assigned to the following four groups, control, exercise only, exercise and the intake of DNA, exercise, and the intake of DNA plus crude catechin. 0.4% of DNA from salmon egg and 0.1% crude catechins from Puerariae thunbergiana roots were fed to the rats. The exercise group was exercised in a treadmill at 20 m/min speed for 6 wks. Body weight and body fat weight of 4 groups were investigated, and the body fat composition and antioxidant activity were evaluated by measuring the weight of organs and biochemical test. After 6 wks, body weight did not show any significant differences among those 4 groups, but body fat weight in exercised groups was significantly decreased. The weight of liver, epididymal adipose tissue(E.A.T) and perirenal adipose tissue(P.A.T) were significantly decreased in groups of exercise only, exercise and the intake of DNA, exercise and the intake of DNA plus crude catechin(p<0.05). Phospholipid, cholesterol and triglyceride levels of serum were decreased by exercise, but HDL-cholesterol level of serum was significantly increased(p<0.05). GOT, GPT and glucose levels in serum were slightly decreased by crude catechin, but serum NEFA levels were significantly increased by crude catechin(p<0.05). Results indicated that excercise with the intake of crude catechin would be helpful for the functional development of the compositions in blood lipid.

Molecular Phylogeny of Syngnathiformes Fishes Inferred from Mitochondrial Cytochrome b DNA Sequences (실고기목 어류 (Syngnathiformes)의 분자계통학적 분류)

  • KOH Beom Seok;SONG Choon Bok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.405-413
    • /
    • 2004
  • The previous morphology-based taxonomic frameworks within the family Syngnathidae had emphasized the significance of the male brood pouch and reproductive biology in defining the group. However, several different hypotheses had been proposed by different investigators. This study has been carried out to determine the phylogenetic relationships among 19 species belonging to the order Syngnathiformes with three Gasterosteiformes species as outgroup taxa by using the mitochondrial cytochrome b DNA sequences. Phylogenetic analyses based on neighbor-joining distance, maximum parsimony, minimum evolution and maximum likelihood method strongly supported that the family Syngnathidae, the suborder Syngnathoidei and the order Syngnathiformes were all monophyletic group. Although much of previous morphological analyses were supported by our molecular data, there were some significant discrepancies between molecular and morphological work. Such an interesting result was that the weedy seadragon (Phyllopteryx taeniolatus) strongly grouped together with the New Zealand pot-belly seahorse (Hippocampus abdominalis). Considering the markedly different brooding structure between them, this unexpected result might be explained whether by multiple independent origins of brooding structure or by hybridization between the female Hippocampus and other syngnathid species having individual membranous egg compartment. In addition, the suborder Aulostomoidei was paraphyletic group because the shrimpfish (Aeliscus strigatus), belonging to the family Centriscidae, always grouped together with the family Syngnathidae as a sister taxon.