• Title/Summary/Keyword: effusive eruption

Search Result 4, Processing Time 0.02 seconds

Interpretion of Transition between Explosive and Effusive Eruptions from Microlite Textural Analyses in the Albong Lava Dome, Ulleung Island, Korea (울릉도 알봉 용암돔의 미정 조직분석으로부터 폭발성 및 분류성 분출 간의 전환 해석)

  • Hwang, Sang Koo;Kim, Ki Beom;Son, Young Woo;Hyeon, Hye Weon
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.553-564
    • /
    • 2020
  • Transition between explosive and effusive eruption in Ulleung Island is observed in the Nari Scoria Deposits and Albong Trachyandesite (lava dome) origined by dome-building eruption and may be related to factors such as magma influx, ascent rate and degassing. However, the interpretation of them has not been resolved yet because the interaction between these factors is not complex but also the resulting behaviour during eruption is unpredictable. This paper focuses on the explosive and effusive activity perceived during building the Albong lava dome in Nari caldera. Samples were collected along with time from the scoria deposits and lava dome, linked to eruption stage and style of activity. Textures of groundmass feldspar microlites from these samples are quantitatively analyzed, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size. The microlite textures show that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. Transition between explosive and effusive eruption was driven by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in a cycle of effusive and explosive eruption.

Volcanic Forms and Eruption Processes of Laoheishan and Huoshaoshan in the Wudalianchi Volcanics, NE China (중국 오대연지 라오헤이산과 후오샤오산의 화산 형태와 분출 과정)

  • Hwang S.K.;Jin X.;Ahn U.S.
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.251-263
    • /
    • 2005
  • Modern volcanoes, Laoheishan and Huoshaoshan, have erupted during $1720\~1721$ in the Wudalianchi volcanic group, NE china. They comprise scoria and spatter cones that consist of potassium-rich phono-tephritic pyroclastic deposits and lavas, and include wide lava flow fields. The Laoheishan scoria cone is a polygenetic multiple volcano that overlaps earlier and later edifices with more complicated internal structures produced in greater scale and in earlier time than the Huoshaoshan. There is a funnel-shaped crater in the center of the later edifice of the Laoheishan scoria cone. The Huoshaoshan spatter cone is a monogenetic simple volcano with a central pit crater. The volcanic sequences indicate eruption processes that followed a repeated pattern that progressed through 5 stages of explosive and effusive eruption including lava fountains and Strombolian eruptions in the Laoheishan, and a recognizable pattern of 2 stages that started with Strombolian eruption and progressed through lava effusion in the Huoshaoshan.

Eruptive Phases and Volcanic Processes of the Guamsan Caldera, Southeastern Cheongsong, Korea (구암산 칼데라의 분출상과 화산과정)

  • ;;;A.J. Reedman
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.74-89
    • /
    • 2002
  • Rock units, relating with the Guamsan caldera, are composed of Guamsan Tuff and rhyolitic intrusions. The Guamsan Tuff consists almost entirely of ash-flow tuffs with some volcanic breccias and fallout tuffs. The volcanic breccia comprises block and ash-flow breccias of near-vent facies and caldera-collapse breccia near the ring fracture. The lower ash-flow tuffs are of an expanded pyroclastic flow phase from the pyroclastic flow-forming eruption with an ash-cloud fall phase of the fallout tuffs on the flow units, but the upper ones are of a non-expanded ash-flow phase from the boiling-over eruption. The rhyolitic intrusions are divided into intracaldera intrusions and ring dikes that are subdivided into inner, intermediate and outer dikes. We compile the volcanic processes along a single cycle of cadela development from the eruptive phases in the Guamsan area. The explosive eruptions began with block and ash-flow phases from collapse of glowing lava dome caused by Pelean eruption, progressed through expanded pyroclastic flow phases and ash-cloud fallout phases during high column collapse of pyroclastic flow-forming eruption from a single central vent. This was followed by non-expanded ash-flow phases due to boiling-over eruption from multiple ring fissure vents. The caldera collapse induced the translation into ring-fissure vents from a single central vent in the earlier eruption. After the boiling-over eruption, there followed an effusive phase in which rhyolitic magma was injected and erupted to be progressively emplaced as small plugs/dikes and ring dikes with many lava domes on the surface. Finally rhyodacitic magma was on emplaced as a series of dikes along the junction of both outer and intermediate dikes on the southwestern side of the caldela.

Geochemical Characteristics of the Sub-alkaline Basalt in the Udo Island, Jeju (제주도 우도 화산섬의 서브알칼리 현무암의 지화학적 특징에 대하여)

  • Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.601-610
    • /
    • 2014
  • Udo is the site of a short-lived monogenetic submarine volcanic vent which builts basaltic clastic deposits below sea level, by early Surtseyan-type explosive eruption and later effusive lava eruptions. Mineral assemblage, major and trace element chemistry indicate that the Someori sub-alkaline lava flows were related to the WPTB(within plate tholeiitic basalt) rather than IAT(island-arc tholeiite) and that the geotectonic regime of Korean Peninsula went away from the subduction zone after the Later Miocene.