• Title/Summary/Keyword: efflux time

Search Result 74, Processing Time 0.027 seconds

Analyses of Single Nucleotide Polymorphisms and Haplotype Linkage of the Human ABCB1 (MDR1) Gene in Korean

  • Ryu, Ho-Cheol;Kwon, Hyog-Young;Choi, Il-Kuen;Rhee, Dong-Kwon
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1132-1139
    • /
    • 2006
  • Single nucleotide polymorph isms (SNPs) in the MDR1 gene that are responsible for drug efflux can cause toxicity. Therefore, this study determined the SNPs of the Korean MDR1 gene, and analyzed the haplotypes and a linkage disequilibrium (LD) of the SNPs determined. The frequency of 9 SNPs from the MDR1 gene was determined by PCR-RFLP analyses of 100 to 500 healthy individuals. The frequcies of the SNPs were C3435T (47.7%), G2677T (37.6%), G2677A (4.4%), T1236C (21.7%), T129C (8%), A2956G (2.5%), T307C (1.5%), A41aG (9.2%), C145G (0%), and G4030C (0%). Analyses of the haplotype structure and an estimation of the LD of the combined polymorph isms demonstrated that the frequency of the 1236T-2677G-3435T haplotype is much higher in Koreans (14.1%) than in Chinese and western black Africans and the C3435T SNP in Koreans appears to have LD with T129C in Koreans for the first time. These results provide insight into the genetic variation of MDR1 in Koreans, and demonstrated the possibility of a new LD in this gene.

Some Factors Affecting Lipid Metabolism (지질대사(脂質代謝)에 관여하는 인자(因子))

  • Nam, Hyun-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.2
    • /
    • pp.191-200
    • /
    • 1986
  • It is now generally accepted that individuals at increased risk for cardiovascular disease may be identified by certain traits or habbits. The factors such as high blood pressure, elevated blood cholestrol, age, sex and obesity are associated with increseaed frequency of disease. The blood cholesterol level lowering will decrease cardiovascular disease risk. The regression of atherosclerosis can be achieved by lowering the level of circulating cholesterol. Those things are connected with the quantity and quality of protein, fats, carbohydrates, especially soluble and non-soluble fiber, magnesium and calcium. The lipoprotein and lipid metabolism are connected with the lipid transport. The factors on lipid absorption and blood serum lipid pattern of human are exist. The factors have a variety of materials with different chemical and physical properties. The soluble fiber diet make a low blood and liver lipids. Many kind of soluble fiber results in a lowering of blood cholesterol and triglyceride levels. The cholesterol lowering effects of dietery fiber may be a results of alterations of in intestinal handling of fats, hepatic metabolism of fatty acid or triglyceride acid metabolism of lipoprotein. It is investigated that the high density lipoprotein (HDL) is inversely related to coronary artery disease. It has been postulated that HDL may be an important factor in cholesterol efflux from the tissues, therby reducing the amount of cholesterol deposited there. Alternatively, the HDL may pick up cholestyl ester and phospholipid during normal VLDL lipolysis in the plasma. The HDL levels are relatively insensitive to diet. At present time, the cause-and -diet effect of HDL's inverse relation to CHD remains unclear.

  • PDF

Fuzzy inference systems based prediction of engineering properties of two-stage concrete

  • Najjar, Manal F.;Nehdi, Moncef L.;Azabi, Tareq M.;Soliman, Ahmed M.
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.133-142
    • /
    • 2017
  • Two-stage concrete (TSC), also known as pre-placed aggregate concrete, is characterized by its unique placement technique, whereby the coarse aggregate is first placed in the formwork, then injected with a special grout. Despite its superior sustainability and technical features, TSC has remained a basic concrete technology without much use of modern chemical admixtures, new binders, fiber reinforcement or other emerging additions. In the present study, an experimental database for TSC was built. Different types of cementitious binders (single, binary, and ternary) comprising ordinary portland cement, fly ash, silica fume, and metakaolin were used to produce the various TSC mixtures. Different dosages of steel fibres having different lengths were also incorporated to enhance the mechanical properties of TSC. The database thus created was used to develop fuzzy logic models as predictive tools for the grout flowability and mechanical properties of TSC mixtures. The performance of the developed models was evaluated using statistical parameters and error analyses. The results indicate that the fuzzy logic models thus developed can be powerful tools for predicting the TSC grout flowability and mechanical properties and a useful aid for the design of TSC mixtures.

Effects of Apigenin, a Flavonoid, on the Bioavailability of Tamoxifen in Rats (흰쥐에서 아피제닌이 타목시펜의 생체이용률에 미치는 영향)

  • Kim, Yang-Woo;Choi, Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.54 no.5
    • /
    • pp.370-376
    • /
    • 2010
  • The aim of this study is to investigate the effect of apigenin on the pharmacokinetics of tamoxifen in rats. Tamoxifen was administered orally (10 mg/kg) or intravenously (2 mg/kg) without or with oral administration of apigenin (0.4, 2.0 or 8.0 mg/kg) to rats. The effect of apigenin on the P-glycoprotein (P-gp) and CYP3A4 activity was also evaluated. Apigenin inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly enhanced the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. The plasma concentrations of tamoxifen were increased significantly by apigenin compared to control. The areas under the plasma concentration-time curve (AUC) and the peak concentrations ($IC_{max}$) of tamoxifen with apigenin were significantly higher than those of the control group. Consequently, the relative bioavailability (RB%) of tamoxifen with apigenin was 2-3-fold higher than the control, and absolute bioavailability (AB%) of tamoxifen were significantly higher (p<0.05 with co-administration, p<0.01 with pretreatment) than those of the control. The increased bioavailability of tamoxifen in rats with apigenin might be associated with the inhibition of an efflux pump P-glycoprotein and CYP3A4 by apigenin. From these results, dosage regimen of tamoxifen may be need to adjust when concomitantly administered with apigenin.

Enhanced Nimodipine Bioavailability After Oral Administration of Nimodipine with Morin, a Flavonoid, in Rabbits

  • Choi Jun-Shik;Burm Jin-Pil
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.333-338
    • /
    • 2006
  • The aim of this study was to investigate the effect of morin on the bioavailability of nimodipine after administering nimodipine (15 mg/kg) orally to rabbits either co-administered or pretreated with morin (2, 10 and 20 mg/kg). The plasma concentrations of nimodipine in the rabbits pretreated with morin were increased significantly (p<0.05 at 10 mg/kg, p<0.01 at 20 mg/kg) compared with the control, but the plasma concentrations of nimodipine co-administered with morin were not significant. The areas under the plasma concentration-time curve (AUC) and the peak concentrations $(C_{max})$ of the nimodipine in the rabbits pretreated with morin were significantly higher (p<0.05 at 10 mg/kg, p<0.01 at 20 mg/kg), but only the $C_{max}$ of nimodipine coadministered with morin 10 mg/kg was increased significantly (p<0.05). The absolute bioavailability $(A.B\%)$ of nimodipine in the rabbits pretreated with morin was significantly (p<0.05 at 10 mg/kg, p<0.01 at 20 mg/kg) higher $(54.1-65.0\%)$ than the control $(36.7\%)$. The increased bioavailability of nimodipine in the rabbits pretreated with morin might have been resulted from the morin, which inhibits the efflux pump P-glycoprotein and the first-pass metabolizing enzyme by cytochrome P-450 3A4 (CYP 3A4).

Functional characterization of Clonorchis sinensis choline transporter

  • Jeong Yeon Won;Johnsy Mary Louis;Eui Sun Roh;Seok Ho Cha;Jin-Hee Han
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.428-438
    • /
    • 2023
  • Clonorchis sinensis is commonly found in East Asian countries. Clonorchiasis is prevalent in these countries and can lead to various clinical symptoms. In this study, we used overlap extension polymerase chain reaction (PCR) and the Xenopus laevis oocyte expression system to isolate a cDNA encoding the choline transporter of C. sinensis (CsChT). We subsequently characterized recombinant CsChT. Expression of CsChT in X. laevis oocytes enabled efficient transport of radiolabeled choline, with no detectable uptake of arginine, α-ketoglutarate, p-aminohippurate, taurocholate, and estrone sulfate. Influx and efflux experiments showed that CsChT-mediated choline uptake was time- and sodium-dependent, with no exchange properties. Concentration-dependent analyses of revealed saturable kinetics consistent with the Michaelis-Menten equation, while nonlinear regression analyses revealed a Km value of 8.3 µM and a Vmax of 61.0 pmol/oocyte/h. These findings contribute to widen our understanding of CsChT transport properties and the cascade of choline metabolisms within C. sinensis.

Immunochemical Studies for the Characterization of Purified $(Na^+,\;K^+)-ATPase$ and Its Subunits with a Special Reference of Their Effect on Monovalent Cation Transport in Reconstituted $(Na^+,\;K^+)-ATPase$ Vesicles

  • Rhee, H.M.;Hokin, L.E.
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.35-49
    • /
    • 1990
  • A highly purified $(Na^+,\;K^+)-ATPase$ from the rectal gland of Squalus acanthias and from the electric organ of Electrophorus electricus has been used to raise antibodies in rabbits. The 97,000 dalton catalytic subunit and glycoprotein derived from the rectal gland of spiny shark were also used as antigens. The two $(Na^+,\;K^+)-ATPase$ holoenzymes and the two shark subunits were antigenic. In Ouchterlony double diffusion experiments, these antibodies formed precipitation bands with their antigens. Antibodies prepared against the two subunits of shark holoenzyme also formed precipitation bands with their antigens and shark holoenzyme, but not with eel holoenzyme. These observations are in good agreement with inhibitory effect of these antibodies on the catalytic activity of $(Na^+,\;K^+)-ATPase$ both from the shark and the eel, since there is very little cross-reaction between the shark anticatalytic subunit antibodies and the eel holoenzyme. The maximum antibodies titer of the anticatalytic subunit antibodies is found to be 6 weeks after the initial single exposure to this antigen. Multiple injections of the antigen increased the antibody titer. However, the time required to produce the maximum antibody titer was approximately the same. These antibodies also inhibit catalytic activity of $(Na^+,\;K^+)-ATPase$ vesicles reconstituted by a slow dialysis of cholate after solubilization of the enzyme in a presonicated mixture of cholate and phospholipid. In these reconstituted $(Na^+,\;K^+)-ATPase$ vesicles, effects of these antibodies on the fluxes of $Na^+$, $Rb^+$, and $K^+$ were investigated. Control or preimmune serum had no effect on the influx of $^{22}Na^+$ or the efflux of $^{86}Rb^+$. Immunized sera against the shark $(Na^+,\;K^+)-ATPase$ holoenzyme, its glycoprotein or catalytic subunit did inhibit the influx of $^{22}Na^+$ and the efflux of $^{86}Rb^+$. It was also demonstrated that these antibodies inhibit the coupled counter-transport of $Na^+$ and $K^+$ as studied by means of dual labeling experiments. However, this inhibitory effect of the antibodies on transport of ions in the $(Na^+,\;K^+)-ATPase$ vesicles is manifested only on the portion of energy and temperature dependent alkali metal fluxes, not on the portion of ATP and ouabain insensitive ion movement. Simultaneous determination of effects of the antibodies on ion fluxes and vesicular catalytic activity indicates that an inhibition of active ion transport in reconstituted $(Na^+,\;K^+)-ATPase$ vesicles appears to be due to the inhibitory action of the antibodies on the enzymatic activity of $(Na^+,\;K^+)-ATPase$ molecules incorporated in the vesicles. These findings that the inhibitory effects of the antibodies specific to $(Na^+,\;K^+)-ATPase$ or to its subunits on ATP and temperature sensitive monovalent cation transport in parallel with the inhibitory effect of vesicular catalytic activity by these antibodies provide direct evidence that $(Na^+,\;K^+)-ATPase$ is the molecular machinery of active cation transport in this reconstituted $(Na^+,\;K^+)-ATPase$ vesicular system.

  • PDF

Effects of Various Nucleotides on the Membrane Permeability (Nucleotides가 세포막 투과도에 미치는 영향)

  • Lee, Joong-Woo;Jeong, Seong-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 1989
  • The present study was designed to investigate i) the action of various nucleotides on membrane permeability of rat red blood cell and hepatocyte for $Na^{+}$ and $Rb^{+}$ ii) the characteristics of purinoceptors on these cell membranes. Blood from Sprague-Dawley rats was obtained by carotid arterial cannulation. Red blood cells were then washed 3 times with saline at $4{\circ}C$. Hepatic parenchymal cells were isolated from rat livers by using a modification of the Berry and Friend (1969) method. For the $Na^{+}$ influx studies, isolated RBC and hepatocyte were incubated in incubation medium containing $^{22}Na^{+}0.2\;{\mu}Ci/ml$ at $37^{\circ}C$. After various time intervals samples were removed from the incubation flask and washed out 3 times with ice-cold washing solutions. Cells were destroyed by adding Triton X-100 and TCA solution. After centrifugation, the supernatants were assayed for $^{22}Na^{+}$ by gamma counter. $^{86}Rb^{+}$ was used to simulate $K^{+}$ in these $K^{+}efflux$ studies. Isolated hepatocytes were incubated for 60 min in the loading solution containing $^{86}Rb^{+}\;10\;{\mu}Ci/ml$ at $37^{\circ}C$. After loading, the cells washed out 3 times by centrifugation with washing solution. The cells were incubated in buffer solution at $37^{\circ}C$. At intervals thereafter, samples were removed and centrifuged. The supernatants were analyzed for $^{86}Rb^{+}$ by liquid scintillation counter. The main results of the experiments were: 1) ATP and ATPP increased in both $^{22}Na^{+}$ influx and $^{86}Rb^{+}$ efflux in the red blood cell. Although ADP showed a tendency to increase in RBC membrane permeability for $^{22}Na^{+}$ and $^{86}Rb^{+}$, the changes were not significantly different from the control. 2) The Significant changes in $^{22}Na^{+}$ and $^{86}Rb^{+}$ flux by ATP were also demonstrated in hepatocyte. ATPP and ADP showed a tendency to increase in hepatocyte membrane permeability for both ions. 3) Other nucleoside triphosphates-ITP, GTP and CTP-did not change in membrane permeability for $^{22}Na^{+}$ and $^{86}Rb^{+}$ in RBC and hepatocyte. In conclusion, not only ATP but also ATPP activate purinoceptors and change in membrane permeability for $Na^{+}$ and $K^{+}$. In order to activate purinoceptors on the cell membrane, the nucleotides have to possess intact adenine moiety and three phosphates or more in its molecule.

  • PDF

Phorbol Ester TPA Modulates Chemoresistance in the Drug Sensitive Breast Cancer Cell Line MCF-7 by Inducing Expression of Drug Efflux Transporter ABCG2

  • Kalalinia, Fatemeh;Elahian, Fatemeh;Hassani, Mitra;Kasaeeian, Jamal;Behravan, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2979-2984
    • /
    • 2012
  • Recent studies have indicated a link between levels of cyclooxygenase-2 (COX-2) and development of the multidrug resistance (MDR) phenotype. The ATP-binding cassette sub-family G member 2 (ABCG2) is a major MDR-related transporter protein that is frequently overexpressed in cancer patients. In this study, we aimed to evaluate any positive correlation between COX-2 and ABCG2 gene expression using the COX-2 inducer 12-O-tetradecanoylphorbol-13-acetate (TPA) in human breast cancer cell lines. ABCG2 mRNA and protein expression was studied using real-time RT-PCR and flow cytometry, respectively. A significant increase of COX-2 mRNA expression (up to 11-fold by 4 h) was induced by TPA in MDA-MB-231 cells, this induction effect being lower in MCF-7 cells. TPA caused a considerable increase up to 9-fold in ABCG2 mRNA expression in parental MCF-7 cells, while it caused a small enhancement in ABCG2 expression up to 67 % by 4 h followed by a time-dependent decrease in ABCG2 mRNA expression in MDA-MB-231 cells. TPA treatment resulted in a slight increase of ABCG2 protein expression in MCF-7 cells, while a time-dependent decrease in ABCG2 protein expression was occurred in MDA-MB-231 cells. In conclusion, based on the observed effects of TPA in MDA-Mb-231 cells, it is proposed that TPA up-regulates ABCG2 expression in the drug sensitive MCF-7 breast cancer cell line through COX-2 unrelated pathways.

The Effect of Long-term Administration of Epigallocatechin on the Pharmacokinetics of Verapamil in Rats (흰쥐에서 에피게로카테친의 장기투여가 베라파밀의 약물동태에 미치는 영향)

  • Yun, Jae-Kyung;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.2
    • /
    • pp.107-111
    • /
    • 2007
  • Epigallocatechin gallate (EGCC), a flavonoid, is the main component of green tea extracts. EGCG has been reported to be an inhibitor of P-glycoprotein (P-gp) and cytochrom P450 3A(CYP3A4). This study investigated the effect of long-term administration of EGCG on the pharmacokinetics of verapamil in rats. Pharmacokinetic parameters of verapamil were determined after oral administration of verapamil (9 mg/kg) in rats pretreated with EGCG (7.5 mg/hg) for 3 and 9 days. Compared to oral control group, the presence of EGCG significantly (p<0.01) increased the area under the plasma concentration-time curve (AUC) of verapamil by 102% (coad), 83.2% (3 days) and 52.3% (9 days), and the peak concentration $(C_{max})$ by 134% (coad), 120% (3 days) and 66.1% (9 days). The absolute bioavailability (A.B.%) of verapamil was significantly (p<0.01) higher by 8.4% (coad), 7.7% (3 days), 6.4% (9 days) compared to control (4.2%), and presence of EGCG was no significant change in the terminal half-life $(t_{1/2})$ and the time to reach the peak concentration $(T_{max})$ of verapamil. Our results indicate that EGCG significantly enhanced oral bioavailability of verapamil in rats, implying that presence of EGCG could be effective to inhibit the CYP3A4-mediated metabolism and P-gp efflux of verapamil in the intestine. Drug interactions should be considered in the clinical setting when verapamil is coadministrated with EGCG or EGCG-containing dietary.