• Title/Summary/Keyword: effluent restriction

Search Result 5, Processing Time 0.02 seconds

A Study on the Improvement of Effluent Treatment from Small Scale Agro-food Processes (소규모 농산가공시설 배출수 처리시설 개선방안)

  • Kim, Youngjin;Jeon, Jonggil;Kim, Minyoung;Choi, Yonghun
    • Journal of Agricultural Extension & Community Development
    • /
    • v.23 no.4
    • /
    • pp.361-374
    • /
    • 2016
  • This study examined the regulation status on wastewater treatment in agro-food processing and a case study on effluent treatment m ethods was carried out to evaluate any change after the mitigation of regulation. First, in order to clarify the area of investigation, the definition of small-scale agro-processing facilities was reviewed through literature survey and local government ordinance. The current law were separately analyzed into four areas; effluent treatment facilities, development of agro-processing industries, land use and food processes equipment. The exclusion clauses on wastewater discharging facility in the enforcement regulation were defined in detail, which can be served in practice. Site survey, after the questionnaire survey of the person in charge of the local unit, was carried out. As the result, this survey confirmed the positive effects of the deregulation on promoting sewer system service in rural areas, introducing the new processing construction and so on. In addition, it was found that some matters to be considered to determine whether to introduce wastewater treatment plan for public food processing facilities.

Characterization of Bacterial Community in the Ecosystem Amended with Phenol (페놀이 첨가된 생태계에서 세균 군집구조 변화의 분석)

  • 김진복;김치경;안태석;송홍규;이동훈
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.72-79
    • /
    • 2001
  • The effect of phenol on the change of bacterial community in the effluent water from a wastewater treatment plant was analyzed by PCR and terminal restriction fragment length polymorphism (T-RFLP). The fragments of 16S rDNA were amplified by PCR with bacterial primers, where one of the primers was biotinylated at the 5'-end. After digestion with restriction enzymes, HaeIII and AluI, the biotinylated terminal restriction tragments (T-RFs) of the digested products were selectively isolated by using streptavidin paramagnetic particles. The single-stranded DNA of T-RFs was separated by electrophoresis on a polyacrylamide gel and detected by silver staining technique. When 10 standard strains were analyzed by our method, each strain had a unique T-RF which corresponded to the calculated size from the known sequences of RDP database. The T-RFLP fingerprint generated from the effluent water was very complex, and the predominant T-RFs corresponded to members of the genus Acinetobacter, Bacillus and Pseudomonas. In addition, the perturbation of bacterial community was observed when phenol was added to the sample at the final concentration of 250 $l^{-1}$. The number of T-RFs increased and the major bacterial population could be assigned to the genus Acinetobacter, Comamonas, Cytophaga and Pseudomonas. A intense band assigned to the putative genera of Acinetobacter and Cytophaga was eluted, amplified, and sequenced. The nucleotide sequence of the T-RF showed close relationship with the sequence of Acinetobacter junii.

  • PDF

A Study on Comparative Analysis of Socio-economic Impact Assessment Methods on Climate Change and Necessity of Application for Water Management (기후변화 대응을 위한 발전소 온배수 활용 양식업 경제성 분석)

  • Lee, Sangsin;Kim, Shang Moon;Um, Gi Jeung
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • In order to resolve the problem of change in global climate which is worsening as days go by and to preemptively cope with strengthened restriction on carbon emission, the government enacted 'Framework Act on Low Carbon Green Growth' in 2010 and selected green technology and green industry as new national growth engines. For this reason, the necessity to use the un-utilized waste heat across the whole industrial system has become an issue, and studies on and applications of recycling in the agricultural and fishery fields such as cultivation of tropical crops and flatfishes by utilizing the waste heat and thermal effluent generated by large industrial complexes including power plants are being actively carried out. In this study, we looked into the domestic and overseas examples of having utilized waste heat abandoned in the form of power plant thermal effluent, and carried out economic efficiency evaluation of sturgeon aquaculture utilizing thermal effluent of Yeongwol LNG Combined Cycle Power Plant in Gangwon-do. In this analysis, we analyzed the economic efficiency of a model business plan divided into three steps, starting from a small scale in order to minimize the investment risk and financial burden, which is then gradually expanded. The business operation period was assumed to be 10 years (2012~2021), and the NVP (Net Present Value) and economic efficiency (B/C) for the operation period (10 years) were estimated for different loan size by dividing the size of external loan by stage into 80% and 40% based on the basic statistics secured through a site survey. Through the result of analysis, we can see that reducing the size of the external loan is an important factor in securing greater economic efficiency as, while the B/C is 1.79 in the case the external loan is 80% of the total investment, it is presumed to be improved to 1.81 when the loan is 40%. As the findings of this study showed that the economic efficiency of sturgeon aquaculture utilizing thermal effluent of power plant can be secured, it is presumed that regional development project items with high added value can be derived though this, and, in addition, this study will greatly contribute to reinforcement of the capability of local governments to cope with climate change.

  • PDF

The Fermentative Hydrogen Production in Trickling Bed Biofilter Filled with Hydrophilic-and Hydrophobic-Media (소수성 및 친수성 담체를 이용한 Trickling Bed Biofilter의 생물학적 수소생산)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Gu, Man-Bock;Chae, Hee-Jeong;Sang, Byoung-In
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.379-388
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and conducted for hydrogen production under the anaerobic fermentation of sucrose. Each bioreactor consisted of the column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed by the different hydraulic retention time(HRT), and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% of biogas throughout the operation. Hydrogen production rate was increased till $10.5\;L{\cdot}h^{-1}{\cdot}L^{-1}$ of bioreactor when influent sucrose concentrations and recycle rates were varied. At the same time, the hydrogen production rate with hydrophobic media application was higher than its hydrophilic media application. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate, butyrate and lactate. In order to run in the long term operation of both reactor filled with hydrophilic and hydrophobic media, biofilm accumulation on hydrophilic media and biogas produced should be controlled through some process such as periodical backwashing or gas-purging. Four sample were collected from each reactor on the opposite hydrogen production rate, and their bacterial communities were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR products generated using bacterial 16s rRNA gene primers (8f and 926r). It was expressed a marked difference in bacterial communities of both reactors. The trickling bed bioreactor with hydrophobic media demonstrates the feasibility of the process to produce hydrogen gas. A likely application of this reactor technology can be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

The Practical Study for the Treatment of Fish Processing Saline Wastewater Using Immersed MBR (iMBR 공정을 이용한 수산물가공폐수 처리에 관한 실증적 고찰)

  • Park, Seung Kyun;Lee, Dong Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.469-475
    • /
    • 2016
  • The study is the result of an practical operation analysis for the full scale fishery product wastewater treatment plant with immersed MBR (iMBR) process. Since fishery product industries show a wide range of wastewater generation by the season, design and operation of the equalization basin are very important factor. The aeration system for the equalization basin mixing can save the chemical consumption for followed system through the restriction of acid fermentation. The concentrations of wastewater primary DAF process treated were BOD 2,291 mg/L, $COD_{Mn}$ 530 mg/L, SS 256.8 mg/L, T-N 38 mg/L, T-P 13.5 mg/L respectively. It was considered that iMBR is the most efficient biological process for high salinity content wastewater since It is irrelevant to the capability of the sludge precipitation. SADp and SADm were 0.31, $26.5m^3/hr{\cdot}m^3$ respectively. In iMBR process, the critical F/M ratio was derived at 0.08~0.10 gBOD/gMLSS by analysing the correlations between MLSS, normalized TMP and temperature. The effluent concentrations were BOD 1.8 mg/L, $COD_{Mn}$ 12.4 mg/L, SS 1.0 mg/L, T-N 7.85 mg/L, T-P 0.1 mg/L and removal efficiencies were 99.9%, 97.6%, 96.3%, 95.7%, 97.8% respectively.