• 제목/요약/키워드: efficient machining

검색결과 255건 처리시간 0.027초

입방정질화붕소입자 전착지석에 의한 전해디버링 시스템 (Electrochemical Deburring System by the Electroplated CBN Wheel)

  • 최인휴
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.430-438
    • /
    • 1997
  • Deburring and edge finishing technology as the final process of machining operation is required for manufacturing of advanced precise conponents. But, deburring is considered as a difficult problem on going to the high efficient production and automation in the FMS. Removal of burr couldn't have a standard of its definition because of its various shapes, dimensions and properties and mostly depends on manual treatment. Especially, deburring for cross hole inside is very difficult owing to its shape passing through out perpendicular to a main hole. The electrochemical method is suggested as its solution in practical aspect. Therefore, electrochemical deburring technology needs to be developed for the high efficiency and automation of internal deburring in the cross hole. In this study, the new process in the eliminating burr inside cross hole, electrochemical deburring by the wheel electroplated with Cubic-Boron-Nitrade abrasives, is suggested. Its deburring mechanism is described and machining performances is investigated. Also, CBN electroplated wheel is designed and manufactured and then characteristics of electrochemical deburring are investigated through experiments. Overall electrochemical deburring performance against burr inside cross hole is examined in the various power sources such as peak current and direct current.

스텝이송방식을 이용한 미세구멍가공에 관한 실험적 연구 (An Experimental Study on Micro Drilling Using Step Feed)

  • Han, J.U.;Won, J.S.;Jung, Y.G.
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.46-53
    • /
    • 1996
  • Micro drilling is one of the most important machining types and its necessity becomes more and more increasing in the whole field of industry. Micro drilling, however, has few the case of practical application, because it requests high techniques : manufacturing micro drill, treating chip, producting precise hole shape and progressing machining effeciency. Micro drilling has a technical problem: drill breakage from the lack of drill rigdity and the interuption of chip. It is, therefore, essential to select the proper cutting conditions and the step fed for the method solving the lack of rigidity and the interruption of chip. Especially, step feed is very efficient to avoid the breakage of drill, but bring about reducing of cutting efficiency. The study on step feed must be requested more than the present in the near future. The purpose of this paper is to investigate experimentally about cutting conditions which affect on tools and round errors and to estimate about the effect of step feed as well as optimal step feed size to solve the breakage of drill.

  • PDF

절삭가공에서의 기계선정을 위한 기계부하 예측 (Machine load prediction for selecting machines in machining)

  • 최회련;김재관;노형민;이홍철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.997-1000
    • /
    • 2005
  • Dynamic job shop environment requires not only more flexible capabilities of a CAPP system but higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations to be performed by predicting the machine loads. The developed algorithm is based on the multiple objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as Pareto-optimal solutions). The objective shows a combination of the minimization of part movement and the maximization of machine utility balance. The algorithm is characterized by a new and efficient method for nondominated sorting, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II.

  • PDF

AE센서를 이용한 숫돌의 수명판정 및 드레싱시간의 결정에 관한 연구 (A Study on the Determination of Grinding Wheel Life and Dressing Time Using AE Sensor)

  • 전길재;이상태;김남경;정윤교
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.95-102
    • /
    • 2002
  • The grinding operation is an important machining process for machining of final surface. However, grinding process has inevitable troubles such as loading and glazing for grinding wheel. It is, therefore, an essential research theme to determine the wheel life and the dressing time for efficient grinding. In this study, AE signals (AEavg) generated in the grinding operation were measured and the dressing time was determined from the analysis of the AEavg value. To verify the propriety of the obtained result, the AE signals measured on the grinding and the dressing operation were compared with the grinding force signals and the dressing force which were measured at same time. From the obtained result, it was confirmed that the determination of the wheel life and the dressing tilde by the AE measurement technique proposed in this study can be practically used.

Model-based process control for precision CNC machining for space optical materials

  • Han, Jeong-yeol;Kim, Sug-whan;Kim, Keun-hee;Kim, Hyun-bae;Kim, Dae-wook;Kim, Ju-whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.26-26
    • /
    • 2003
  • During fabrication process for the large space optical surfaces, the traditional bound abrasive grinding with bronze bond cupped diamond wheel tools leaves the machine marks and the subsurface damage to be removed by subsequent loose abrasive lapping. We explored a new grinding technique for efficient quantitative control of precision CNC grinding for space optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and a range of resin bond diamond tools. The machining parameters such as grit number, tool rotation speed, work-piece rotation speed, depth of cut and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis methods. The effectiveness of the grinding prediction model was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment details, the results and implications are presented.

  • PDF

열연강판의 드릴링시 공구의 이상상태 검출에 관한 연구 (A Study on the Detection of the Abnormal Tool State in Drilling of Hot-rolled High Strength Steel)

  • 신형곤;김민호;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.888-891
    • /
    • 2000
  • Drilling is one of the most important operations in machining industry and usually the most efficient and economical method of cutting a hole in metal. From automobile parts to aircraft components, almost every manufactured product requires that holes are to be drilled for the purpose of assembly, creation of fluid passages, and so on. It is therefore desirable to monitor drill wear and hole quality changes during the hole drilling process. One important aspect in controlling the drilling process is drill wear status monitoring. With the monitoring, we may decide on optimal timing for tool change. The necessity of the detection of tool wear, fracture and the abnormal tool state has been emphasized in the machining process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include drill wear data obtained from drilling experiments conducted on the workpiece. The results are obtained from monitoring of the cutting force and Acoustic Emission (AE) signals, and from the detection of the abnormal tool state with the computer vision system.

  • PDF

Development of 3D-based On-Machine Measurement Operating System

  • Yoon Gil-Sang;Heo Young-Moo;Kim Gun-Hee;Cho Myeong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.45-50
    • /
    • 2005
  • This paper proposed an efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software-based 3D modeler for inspection on machine, and it is interfaced with machine tools via RS232C. The software is composed of two inspection modules; one is touch probe operating module, and the other is laser displacement sensor operating module. The module for touch probe needs the inspection feature extracted from CAD data. The touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of the laser displacement sensor is used to inspect profiles and very small holes. An advantage of this inspection method is the ability to execute on-line inspection during machining or afterward. The efficiency of proposed system which can predict and define the machining errors of each process was verified, so the developed system was applied to inspect a mold-base (cavity, core).

플라스틱 소재의 표면가공 중 공정조건의 영향 (Effect of Processing Parameters in Surface Machining of Plastic Materials)

  • 한창모;이봉기
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, a plastic surface end-milling was implemented to investigate the effects of processing parameters on surface quality. The end milling can be considered an efficient method for rapid prototyping of thermoplastic bio-systems since it exhibits several beneficial functions including short fabrication time and high dimensional accuracy. In this regard, putative biocompatible thermoplastic materials, such as PMMA, PET, and PC, were chosen as workpiece materials. Among the relevant processing parameters influencing the surface quality of the final product, depth of cut, feed rate, and spindle speed were considered in the present study. The roughness of surfaces machined under various conditions was measured to elucidate the effect of each parameter. We found that the cut depth was the most significant factor. Heat generation during machining also had a remarkable effect. From these investigations, an appropriate combination of processing conditions specific to each type of use and end-product could be found. This optimization can be useful in end-milling of thermoplastic bio-systems.

인터넷 기반 실시간 원격 고속가공 모니터링 (Internet-based Real-Time Remote Monitoring System for High-Speed Machining Process)

  • 이우영;최성주;김흥배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.952-955
    • /
    • 2000
  • Nowadays, Internet is so popular that we can easily access the remote site to search information and to communicate remote site and users. People who want to make a collaborate working environment can use JAVA, CORBA, and other internet programming tools like a Perl/XML. The mechanist are try to make the environment fur collaboration within design/manufacturing, simulation, remote sensing through TCP/IP And many industries and research institutions are working towards the agile manufacturing. This paper describes an internet-based real-Time remote monitoring system. The system consists of a hardware setup and a software interface. The hardware setup consists of a machine and its data acquisition hardware, while the software interface incorporates the data acquisition software, the server program, and the client program. The server program acts as the main interface between the data acquisition system and the internet technology. The client program is to be distributed to the remote users who want to monitor the machining status. The system has been demonstrated and verified for an industrial High-Speed Machine (HSM) especially measuring cutting force and acoustic emission. To share the signal, we make the WWW server and display its value. The system has been found to be highly efficient, reliable and accurate.

  • PDF

마이크로 밀링과 자기디버링을 적용한 마이크로 유동채널 가공 (A Study of Micro-Channel Fabrication by Micro-Milling and Magnetic Abrasive Deburring)

  • 곽태경;곽재섭
    • 대한기계학회논문집A
    • /
    • 제35권8호
    • /
    • pp.899-904
    • /
    • 2011
  • 본 연구는 마이크로 머시닝을 적용한 유동채널가공에서 버의 발생과 제거에 관한 연구이다. AISI316 스테인리스강의 마이크로 유동채널가공은 마이크로 밀링과 자기 디버링을 결합하여 실시하였다. 먼저 마이크로 밀링으로 유동채널을 가공하였고, 가공조건에 따라 마이크로 채널주변에 미소 버가생성됨을 확인하였다. 미소 버를 제거하기 위해서 자기 디버링을 행하였다. AISI316 스테인리스강은 비자성체로 자기연마에 큰 영향을 미치는 자속밀도가 매우 낮은 금속이다. 본 연구에서는 공작물의 자속밀도를 향상시키기 위해서 자기 테이블을 개발하여 이를 자기연마 디버링에 적용하였고, 주사전자현미경(SEM)과 표면형상기로 자기 디버링에 의한 버의 제거효과를 측정하였다.