• 제목/요약/키워드: efficacy rate

검색결과 1,820건 처리시간 0.032초

Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges

  • Kim, Hyoung-Il;Wilson, Brian C.
    • Journal of Gastric Cancer
    • /
    • 제20권4호
    • /
    • pp.355-375
    • /
    • 2020
  • Selective accumulation of a photosensitizer and the subsequent response in only the light-irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth of the therapeutic effect is a positive characteristic when treating surface malignancies, such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer nodules, which would have been missed during assessment using white light visualization only. Furthermore, since few side effects have been reported, this has the potential to become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in terms of photosensitizer type and dose, photosensitizer-light time interval, and light source wavelength, dose, and dose rate. Although several studies have suggested that PDT has favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient groups are required to identify the true benefits. In addition, major complications, such as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, PDD and PDT are likely to be successful therapeutic options for patients with peritoneal carcinomatosis, with several options to optimize the photosensitizer and light delivery parameters to improve safety and efficacy.

Endoscopic slide-in orbital wall reconstruction for isolated medial blowout fractures

  • Kim, Taewoon;Kim, Baek-Kyu
    • 대한두개안면성형외과학회지
    • /
    • 제21권6호
    • /
    • pp.345-350
    • /
    • 2020
  • Background: This study evaluated the efficacy of the endoscopic medial orbital wall repair by comparing it with the conventional transcaruncular method. This surgical approach differs from the established endoscopic technique in that we push the mesh inside the orbit rather than placing it over the defect. Methods: We retrospectively reviewed 40 patients with isolated medial orbital blowout fractures who underwent medial orbital wall reconstruction. Twenty-six patients underwent endoscopic repair, and 14 patients underwent external repair. All patients had preoperative computed tomography scans taken to determine the defect size. Pre- and postoperative exophthalmometry, operation time, the existence of diplopia, and pain were evaluated and compared between the two methods. We present a case showing our procedure. Results: The operation time was significantly shorter in the endoscopic group (44.7 minutes vs. 73.9 minutes, p= 0.035). The preoperative defect size, enophthalmos correction rate, and pain did not significantly differ between the two groups. All patients with preoperative diplopia, eyeball movement limitation, or enophthalmos had their symptoms resolved, except for one patient who had preexisting strabismus. Conclusion: This study demonstrates that endoscopic medial orbital wall repair is not inferior to the transcaruncular method. The endoscopic approach seems to reduce the operation time, probably because the dissection process is shorter, and no wound repair is needed. Compared to the previous endoscopic method, our method is not complicated, and is more physiological. Larger scale studies should be performed for validation.

p 형 반도체 층의 Mg 델타 도핑을 이용한 센서 광원 용 LED의 성능 향상 (Improvement of the LED Performance Using Mg Delta-doing in p Type Cladding Layer for Sensor Application)

  • 김유경;이승섭;전주호;김만경;장수환
    • 센서학회지
    • /
    • 제31권1호
    • /
    • pp.31-35
    • /
    • 2022
  • The efficacy improvement of the light emitting diode (LED) was studied for the realization of small-size, low power consumption, and highly sensitive bio-sensor instrument. The performance of the LED with Mg delta-doping at the interface of AlGaN/GaN super-lattice in p type cladding layer was simulated. The device with Mg delta-doping showed improved current, radiative recombination rate, electroluminescence, and light output power compared to the conventional LED structure. Under the bias condition of 5 V, the improved device exhibited 20.8% increase in the light output power. This is attributed to the increment of hole concentration from stable ionization of Mg in p type cladding layer. This result is expected to be used for the miniaturization, power saving, and sensitivity improvement of the bio-sensor system.

Building Hybrid Stop-Words Technique with Normalization for Pre-Processing Arabic Text

  • Atwan, Jaffar
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.65-74
    • /
    • 2022
  • In natural language processing, commonly used words such as prepositions are referred to as stop-words; they have no inherent meaning and are therefore ignored in indexing and retrieval tasks. The removal of stop-words from Arabic text has a significant impact in terms of reducing the size of a cor- pus text, which leads to an improvement in the effectiveness and performance of Arabic-language processing systems. This study investigated the effectiveness of applying a stop-word lists elimination with normalization as a preprocessing step. The idea was to merge statistical method with the linguistic method to attain the best efficacy, and comparing the effects of this two-pronged approach in reducing corpus size for Ara- bic natural language processing systems. Three stop-word lists were considered: an Arabic Text Lookup Stop-list, Frequency- based Stop-list using Zipf's law, and Combined Stop-list. An experiment was conducted using a selected file from the Arabic Newswire data set. In the experiment, the size of the cor- pus was compared after removing the words contained in each list. The results showed that the best reduction in size was achieved by using the Combined Stop-list with normalization, with a word count reduction of 452930 and a compression rate of 30%.

Mathematical modeling of the impact of Omicron variant on the COVID-19 situation in South Korea

  • Oh, Jooha;Apio, Catherine;Park, Taesung
    • Genomics & Informatics
    • /
    • 제20권2호
    • /
    • pp.22.1-22.9
    • /
    • 2022
  • The rise of newer coronavirus disease 2019 (COVID-19) variants has brought a challenge to ending the spread of COVID-19. The variants have a different fatality, morbidity, and transmission rates and affect vaccine efficacy differently. Therefore, the impact of each new variant on the spread of COVID-19 is of interest to governments and scientists. Here, we proposed mathematical SEIQRDVP and SEIQRDV3P models to predict the impact of the Omicron variant on the spread of the COVID-19 situation in South Korea. SEIQEDVP considers one vaccine level at a time while SEIQRDV3P considers three vaccination levels (only one dose received, full doses received, and full doses + booster shots received) simultaneously. The omicron variant's effect was contemplated as a weighted sum of the delta and omicron variants' transmission rate and tuned using a hyperparameter k. Our models' performances were compared with common models like SEIR, SEIQR, and SEIQRDVUP using the root mean square error (RMSE). SEIQRDV3P performed better than the SEIQRDVP model. Without consideration of the variant effect, we don't see a rapid rise in COVID-19 cases and high RMSE values. But, with consideration of the omicron variant, we predicted a continuous rapid rise in COVID-19 cases until maybe herd immunity is developed in the population. Also, the RMSE value for the SEIQRDV3P model decreased by 27.4%. Therefore, modeling the impact of any new risen variant is crucial in determining the trajectory of the spread of COVID-19 and determining policies to be implemented.

Clinical Applications of a Non-ablative Fractional Dual Laser (1550/1927 nm)

  • Chang, Ho Sun;Lim, Nam Kyu
    • Medical Lasers
    • /
    • 제9권2호
    • /
    • pp.110-118
    • /
    • 2020
  • The non-ablative fractional dual laser is equipped with two types of lasers, 1550 nm and 1927 nm in one device, and was approved by the United States Food and Drug Administration in 2013. The advantages of the non-ablative fractional laser (NAFL) include fewer side effects such as erythema, edema, post-laser pigmentation, and scab formation. Thus, the NAFL is preferred by both practitioners and consumers because it is convenient and safe for use. The 1550 nm erbium glass and 1927 nm thulium lasers are representative NAFLs that have been developed separately and are often used as a single-wavelength laser with proven clinical efficacy in various indications. The 1550 nm wavelength laser penetrates the dermis layer and the 1927 nm wavelength laser is effective for epidermal lesions. Therefore, targeting the skin layer can be easily achieved with both the 1550 and 1927 nm lasers, respectively, or in combination. Clinically, the 1550 nm laser is effective in the treatment of mild to moderate sagging and wrinkles, scars, and resurfacing. The 1927 nm laser improves skin texture and treats skin pigmentation and wounds. It can also be used for drug delivery. The selection and utilization rate of NAFL has been increasing in recent times, due to changes in lifestyle patterns and the need for beauty treatments with fewer side effects and short downtime. In this study, we present a plan for safe and effective laser therapy through a review of literature. Clinical applications of the multifunctional NAFL are also described.

Efficacy of 694-nm Fractional Toning Ruby Laser in the Treatment of Malar Melasma

  • Kim, Jun Hyun;Park, Eun Soo;Nam, Seung Min;Cha, Han Gyu
    • Medical Lasers
    • /
    • 제10권1호
    • /
    • pp.45-48
    • /
    • 2021
  • Background and Objectives Among the numerous available therapies, the usefulness of laser treatment has been proven in melasma, especially for refractory to topical agents or chemical peels. This study evaluated the effectiveness of 694-nm wavelength fractional toning ruby laser in melasma presenting on the malar area. Materials and Methods This was a retrospective study of 40 melasma patients treated with 694-nm wavelength ruby fractional toning laser for a total of 8 cycles at intervals of 2 to 3 weeks. Two independent investigators assessed the photographic findings and evaluated the severity of melasma by applying the Melasma Severity Scale (MSS). Subject satisfaction score was also surveyed at every visit. Results After the 4th treatment, subjects were continuously satisfied with their results. At the 8th visit and 1-month after the last treatment, MSS was determined to be significantly improved as compared to the first visit. One case of minor hypopigmentation was reported, but was resolved after one month. Conclusion Application of 694-nm wavelength fractional toning ruby laser for treating melasma on the malar area showed significant improvement in the MSS. Moreover, the treatment could be repeatedly applied, with low complication rate and significant patient satisfaction.

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

향기요법의 암 환자 불면에 대한 효과에 관한 예비임상연구 (A Pilot study to estimate the efficacy of aroma therapy on insomnia in cancer patient)

  • 정현정
    • 대한암한의학회지
    • /
    • 제27권1호
    • /
    • pp.37-48
    • /
    • 2022
  • Objective: Insomnia is a very common symptom and has a great effect on the quality of life in cancer patients. This study was conducted to identify the effects of the aroma therapy on insomnia in cancer patients. Methods: The study was performed with one group in before-after test design. The subjects were 15 cancer patients with insomnia selected by convenience sampling in Daegu. The aroma therapy consists of 10-minute sessions twice a week over 6 weeks. The PSQI (Pittsburgh Sleep Quality Index), ISI (Insomnia Severity Index) were measured at baseline and at 3 and 6 weeks, after 6 weeks after finishing treatment. STAI (State-Trait Anxiety Inventory), FACT-G (Functional Assessment Cancer Therapy-General), HRV (Heart Rate Variability) were measured at baseline, post-treatment and after 6 weeks after finishing treatments. Results: Fifteen patients (mean age 50.93 ± 7.29 years), with breast, ovarian or gastric cancer, participated this study. At post-treatment, PSQI (from 14.18 ± 2.64 to 6.18 ± 3.03), ISI (from 19.00 ± 3.19 to 8.18 ± 5.14), FACT-G (from 55.65 ± 11.20 to 66.91 ± 12.33), and STAI (from 40.36 ± 8.10 to 34.73 ± 9.81, from 45.64 ± 6.07 to 39.73 ± 9.37) scores improved significantly over baseline(p<0.001). Conclusion: Aroma therapy improved insomnia, anxiety and quality of life on cancer patients.

톳 에탄올 추출물에 의한 HT29 결장암 세포의 ROS 의존적 세포사멸 유도 (Induction of ROS-dependent apoptosis by ethanol extract of Hizikia fusiforme in HT29 colon carcinoma cells)

  • 홍수현;최영현
    • 한국해양바이오학회지
    • /
    • 제14권2호
    • /
    • pp.93-101
    • /
    • 2022
  • Hizikia fusiforme, a type of brown algae, is widely used in Asian cuisine. It has been reported to have various pharmacological effects. In this study, the effects of the ethanol extract from H. fusiforme (EAHF) on the proliferation of human colon carcinoma cells were investigated. The effect on the survival of human hepatocarcinoma and colon carcinoma cells was examined, and results revealed that the anti-proliferative effects of EAHF were higher in colon carcinoma cells than in hepatocarcinoma cells. The inhibition of proliferation of HT29 colon carcinoma cells by EAHF treatment was closely related to the induction of apoptosis. EAHF treatment also increased caspase activity and poly(ADP-ribose) polymerase degradation, induced mitochondrial dysfunction, altered Bcl-2 family protein expression, and increased the rate of cytochrome c released from the mitochondria into the cytoplasm. Furthermore, the production of reactive oxygen species (ROS) was markedly stimulated by EAHF treatment, and when ROS production was blocked, EAHF-induced cytotoxicity was significantly attenuated. These results indicate that the anticancer activity of EAHF in HT29 colon carcinoma cells was induced by ROS-dependent mitochondrial impairment. While EAHF exhibited potent anticancer activity in colon carcinoma cells in this study, further studies on the active components of EAHF and their efficacy should be performed.