• Title/Summary/Keyword: effective vibration length

Search Result 93, Processing Time 0.025 seconds

Rating of Noise Emission by Plumbing system in Bathroom (화장실 배수관에 따른 배수소음 평가)

  • 정진연;이성호;정갑철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.923-927
    • /
    • 2003
  • The aim of this study is to investigate the characteristics and quantity of the noise reduction by pipe material, wrapped pipe with glass wool and installed pipe height The characteristics of noise emission from drain-pipes is as follows. The noise reduction pipe in PVC can reduce noise levels in 7-10㏈ and the cast-iron pipe can reduce in 14㏈compared with the normal PVC pipe. In these days, the glass wool was used for preventing the burst and the noise reduction. But the glass wool for wrapping pipe is not effective to the noise reduction. The characteristics of noise emission from various installed pipe height were measured As the ceiling space of the remodeled building was raised, the noise level was troubled by increasing of the vertical pipe length.

  • PDF

Wear Characteristics of Multi-Span Tube Due to Turbulence Excitation (다경간 전열관의 난류 여기에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.919-924
    • /
    • 2005
  • Fretting-wear caused by turbulence excitation for KSNP(Korea standard nuclear power plant) steam generator is investigated numerically. Secondary sides density and normal velocity are obtained by the thermal-hydraulic data of the steam generator. Because nonlinear finite element analysis is complex and time consuming, work rate is estimated by using linear analysis for simple straight 2-span tube. Wear volume and depth by using work rate calculation are estimated. Span length, secondary side fluid density and normal velocity are adopted to study the effects on the fretting-wear by turbulence excitation. When secondary sides density and normal velocity is increased, It turns out that secondary side density and normal gap velocity are very important paramater for fretting-wear phenomena of the steam generator.

  • PDF

A Study on Noise Reduction of Rotary Compressor (공조용 로터리 압축기의 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF

Effects of Various Types of Bridge Exercise on the Walking Ability of Stroke Patients

  • Ynag, Dae-Jung;Uhm, Yo-Han
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.3
    • /
    • pp.137-145
    • /
    • 2020
  • Purpose: The purpose of this study is to examine the effect of various bridge exercises on walking ability. Method: The subjects were 30 stroke patients. They were divided into a bridge exercise group on a stable support surface (Group I), a bridge exercise group on an unstable support surface (Group II), and a bridge exercise group combined with whole body vibrations (Group III). 10 subjects were randomly assigned into each group. The subjects of this study had 30 minutes of nervous system physical therapy including gait training and strength training. In addition, each group underwent a 30 minutes session five times a week for eight weeks. Before intervention, LUKOtronic was used to measure step width and step length, time was measured with a 10 m walking test, and time and number of steps were measured with the figure 8 walking test. After the intervention, remeasured and analysis was performed for each group. Results: As a result of comparing and analyzing the change of walking ability between groups, there was a statistically significant difference. As a result of the post hoc analysis according to the change of walking ability among groups, the change of walking ability was larger in Group III than in Group I and Group II. Conclusion: Based on these results, it is confirmed that the bridge exercise combined with whole body vibration was more effective for walking ability. Based on these findings, this study proposes an effective program for elite athletes as well as stroke patients.

Effective Methods Reducing Joint Vibration and Elongation in High speed Rail Bridge (고속철도교 신축부의 진동 및 신축의 효율적인 저감 방안)

  • Min, Kyung-Ju;Kang, Tae-Ku;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.800-806
    • /
    • 2011
  • Thermal expansion which occurs at the high speed rail joint is proportional to the free length from the point of fixity. This thermal expansion behaves similar to free expansion because the girder longitudinal stiffness is much larger than longitudinal resistance of rail pads. But the longitudinal displacement in the long rail is nominal because the longitudinal support condition of the girder is normally MFM(movable-fix-movable) system. Due to these girder expansion characteristics, there is longitudinal relative displacement at the rail pad and rail fastener spring which connects rail and girder. If the relative displacement between rail and girder is beyond the elastic limit for the rail pad, rail fastener system shall be applied using sliding fastener to prevent rail pad damage and fastener separation resulting from slip. On the other hand, train vertical vibration and tilting can occur due to the lack of fastener vertical force if the sliding fastener is applied at the girder joint. In the high speed rail bridge, vibration can occur due to the spring stiffness of the elastomeric bearing, also both vertical downward and upward displacement can occur. The elastomeric bearing vertical movement can cause rail displacement and finally the stability of the ballast is reduced because the gravel movement is induced.

  • PDF

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Analysis of Behavior of Train and Track at Transition Zone between Floating Slab Track and Conventional Concrete Slab Track (플로팅 슬래브궤도와 일반 콘크리트궤도 접속부에서의 열차 및 궤도의 거동 분석)

  • Jang, Seung-Yup;Yang, Sin-Chu;Park, Man-Ho;Joh, Su-Ik
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.379-384
    • /
    • 2009
  • It is of great importance to assure the running safety and ride comfort in designing the floating slab track for the mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety and ride comfort, and then, the behavior of train and track at the transition zone between the floating slab track and the conventional concrete slab track according to several main design variables such as spring constant, damping coefficient, spacing and arrangement of isolators and slab length, using the dynamic analysis technique considering the train-track interaction. The results of numerical analysis demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the vertical vibration acceleration of the train body, wheel-rail interaction force, rail bending stress and uplift force. The increase becomes higher with the decrease of the spring constant of isolators and the increase of the isolator spacing, but the damping ratio does not significantly affect the behavior of train and track at the transition. Therefore, to assure the running safety and ride comfort, simultaneously increasing the effectiveness of vibration isolation, it is effective to minimize the relative vertical offset between the floating slab and the conventional track slab by adjusting the spring constant and spacing of isolators at the transition.

  • PDF

Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method

  • Emdadi, Mohsen;Mohammadimehr, Mehdi;Navi, Borhan Rousta
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.109-123
    • /
    • 2019
  • In this article, the free vibration analysis of annular sandwich plates with various functionally graded (FG) porous cores and carbon nanotubes reinforced composite (CNTRC) facesheets is investigated based on modified couple stress theory (MCST) and first order shear deformation theories (FSDT). The annular sandwich plate is composed of two face layers and a functionally graded porous core layer which contains different porosity distributions. Various approaches such as extended mixture rule (EMR), Eshelby-Mori-Tanaka (E-M-T), and Halpin-Tsai (H-T) are used to determine the effective material properties of microcomposite circular sandwich plate. The governing equations of motion are extracted by using Hamilton's principle and FSDT. A Ritz method has been utilized to calculate the natural frequency of an annular sandwich plate. The effects of material length scale parameters, boundary conditions, aspect and inner-outer radius ratios, FG porous distributions, pore compressibility and volume fractions of CNTs are considered. The results are obtained by Ritz solutions that can be served as benchmark data to validate their numerical and analytical methods in the future work and also in solid-state physics, materials science, and micro-electro-mechanical devices.

Effects of Whole Body Vibration Exercise on Lower Extremity Muscle Activity and Gait Ability in Stroke Patients (전신진동운동이 뇌졸중 환자의 다리 근활성도와 보행능력에 미치는 영향)

  • Kim, Je-ho
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.29-36
    • /
    • 2020
  • Background: The purpose of this study was to determine the effects of whole body vibration (WBV) exercise on lower extremity muscle activity and gait ability in stroke patients. Methods: For this study, 30 stroke patients participated in this study and they were divided into WBV exercise group and sham-WBV exercise group, each group in which consisted of 15 patients. WBV group and sham-WBV group was performed by the patients for five times a week, for six weeks. sEMG was used to measure lower extremity muscle activity. Changes in the activities of the muscles, such as the vatus lateralis (VL), vastus medialis (VM), bicep femoris (BF), gastrocnemius (GCM) muscle, were analysis. Motion analysis system was used to measure gait ability. Gait ability measured the stride length (SL) and walking velocity (WV). Results: According to the results of the comparisons between the groups, after intervention, lower extremity muscle activity of VL (p<.01), VM (p<.01), GCM (p<.01). SL, WV was significant between the group (p<.01). Conclusion: This study showed the WBV exercise is effective for improving increase of muscle activity and gait ability in stroke patients.