Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.
Researchers have embarked on an active investigation into the feasibility of adopting alternative materials as a solution to the mounting environmental and economic challenges associated with traditional concrete-based construction materials, such as reinforced concrete. The examination of concrete's mechanical properties using laboratory methods is a complex, time-consuming, and costly endeavor. Consequently, the need for models that can overcome these drawbacks is urgent. Fortunately, the ever-increasing availability of data has paved the way for the utilization of machine learning methods, which can provide powerful, efficient, and cost-effective models. This study aims to explore the potential of twelve machine learning algorithms in predicting the tensile strength of geopolymer concrete (GPC) under various curing conditions. To fulfill this objective, 221 datasets, comprising tensile strength test results of GPC with diverse mix ratios and curing conditions, were employed. Additionally, a number of unseen datasets were used to assess the overall performance of the machine learning models. Through a comprehensive analysis of statistical indices and a comparison of the models' behavior with laboratory tests, it was determined that nearly all the models exhibited satisfactory potential in estimating the tensile strength of GPC. Nevertheless, the artificial neural networks and support vector regression models demonstrated the highest robustness. Both the laboratory tests and machine learning outcomes revealed that GPC composed of 30% fly ash and 70% ground granulated blast slag, mixed with 14 mol of NaOH, and cured in an oven at 300°F for 28 days exhibited superior tensile strength.
Ibrahim Albaijan;Hanan Samadi;Arsalan Mahmoodzadeh;Danial Fakhri;Mehdi Hosseinzadeh;Nejib Ghazouani;Khaled Mohamed Elhadi
Steel and Composite Structures
/
v.52
no.3
/
pp.293-312
/
2024
Researchers are actively investigating the potential for utilizing alternative materials in construction to tackle the environmental and economic challenges linked to traditional concrete-based materials. Nevertheless, conventional laboratory methods for testing the mechanical properties of concrete are both costly and time-consuming. The limitations of traditional models in predicting the tensile strength of concrete composited with geopolymer have created a demand for more advanced models. Fortunately, the increasing availability of data has facilitated the use of machine learning methods, which offer powerful and cost-effective models. This paper aims to explore the potential of several machine learning methods in predicting the tensile strength of geopolymer concrete under different curing conditions. The study utilizes a dataset of 221 tensile strength test results for geopolymer concrete with varying mix ratios and curing conditions. The effectiveness of the machine learning models is evaluated using additional unseen datasets. Based on the values of loss functions and evaluation metrics, the results indicate that most models have the potential to estimate the tensile strength of geopolymer concrete satisfactorily. However, the Takagi Sugeno fuzzy model (TSF) and gene expression programming (GEP) models demonstrate the highest robustness. Both the laboratory tests and machine learning outcomes indicate that geopolymer concrete composed of 50% fly ash and 40% ground granulated blast slag, mixed with 10 mol of NaOH, and cured in an oven at 190°F for 28 days has superior tensile strength.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
2000.11c
/
pp.623-631
/
2000
Advanced Life Support Systems (ALSS) are being studied to support human life during long-duration space missions. ALSS can be categorized into four subsystems: Crew, Biomass Production, Food Processing and Nutrition, Waste Processing and Resource Recovery. The System Studies and Modeling (SSM) team of New Jersey-NASA Specialized Center of Research and Training (NJ-NSCORT) has facilitated and conducted analyses of ALSS to address systems level issues. The underlying concept of the SSM work is to enable the effective utilization of information to aid in planning, analysis, design, management, and operation of ALSS and their components. Analytical tools and computer models for ALSS analyses have been developed and implemented for value-added information processing. The results of analyses have been delivered through the Internet for effective communication within the advanced life support (ALS) community. Several modeling paradigms have been explored by developing tools for use in systems analysis. They include object-oriented approach for top-level models, procedural approach for process-level models, and application of commercially available modeling tools such as MATLAB$\^$(R)//Simulink$\^$(R)/. Every paradigm has its particular applicability for the purpose of modeling work. An overview is presented of the systems studies and modeling work conducted by the NJ-NSCORT SSM team in its efforts to provide systems analysis capabilities to the ALS community. The experience gained and the analytical tools developed from this work can be extended to solving problems encountered in general agriculture.
This study proposes a double-composite section to enhance the s serviceability of twin-girder railway bridges, especially in terms of the flexural stiffness of the composite section in negative-moment regions. This paper deals with experiments on continuous twin-girder bridge models with 5m-5m span length with the proposed double-composite action. From results of static tests on the bridge models, several design considerations were investigated including effective width, shear connection and ultimate strength of the double-composite concrete slab showed full shear connection, which verified the suggested empirical equation. From the flexural behavior of the double-composite section, the effective width of the bottom concrete slab can be evaluated as that of the concrete slab under compression. The ultimate flexural strength of the bridge models verified the validity of the rigid plastic analysis of the double-composite section. Design guidelines were suggested based on the test results.
Advanced Life Support Systems(ALSS) are being studied to support human life during long-duration space missions. ALSS can be categorized into four subsystems: Crew, Biomass Production, Food Processing and Nutrition, Waste Processing and Resource Recovery. The System Studies and Modeling (SSM) team of New Jersey-NASA Specialized Center of Research and Training (NJ-NSCORT) has facilitated and conducted analyses of ALSS to address systems level issues. The underlying concept of the SSM work is to enable the effective utilization of information to aid in planning, analysis, design, management, and operation of ALSS and their components. Analytical tools and computer models for ALSS analyses have been developed and implemented for value-added information processing. The results of analyses heave been delivered through the internet for effective communication within the advanced life support (ALS) community. Several modeling paradigms have been explored by developing tools for use in systems analysis. they include objected-oriented approach for top-level models, procedureal approach for process-level models, and application of commercially available modeling tools such as $MATLAB^{R}$/$Simulink^{R}$. Every paradigm has its particular applicability for the purpose of modeling work. an overview is presented of the systems studies and modeling work conducted by the NJ-NSCORT SSM team in its efforts to provide systems analysis capabilities to the ALS community. The experience gained and the analytical tools developed from this work can be extended to solving problems encountered in general agriculture.
The social welfare facilities are trusted by the government for the development of appropriate welfare services and their delivery systems. They aim to provide people with professional social welfare services and, for this purpose, they develop ways to effectively operate facilities and to deliver the services efficiently. So far, the five consecutive evaluations based on the Social Services Act have suggested the effective and systematic ways of operating social welfare facilities. Through these efforts, they established an important basis for the balanced development and further advancement of social welfare facilities. Nevertheless, people have continually pointed out problems concerning the evaluation system of social welfare facilities. Accordingly, these problems have the necessity of investigation for reformed directions by means of effective control and evaluation system for the operation of social welfare facilities. Therefore, this study aims to suggest convergence models for improving the social welfare facilities evaluation system.
Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
Structural Engineering and Mechanics
/
v.37
no.2
/
pp.149-162
/
2011
The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.
Aneurysm embolisation method using coils have been widely used. Micro coils are introduced via a small catheter, and are packed inside of aneurysm sac, which induces intraaneurysmal flow stagnation and thrombus formation. When partial blocking of an aneurysm is inevitable, the location of coils is important since it changes the flow patterns inside the aneurysm, which affect the embolisation process. We measured the flow field inside the partially blocked lateral aneurysm models in vitro, and tried to suggest the effective locations of coils for aneurysm embolisation. Velocity fields are measured using a particle image velocitimeter for different coil locations- proximal neck, distal neck, proximal dome and distal dome. Flow into the aneurysm sac was significantly reduced in the distally blocked models, and coils at distal neck blocked inflow more effectively comparing to those at distal dome. This study suggests that distal neck should be the most effective location for aneurysm embolisation.
It is important to predict the groundwater level fluctuation for effective management of groundwater monitoring system and groundwater resources. In the present study, three different time series models for the prediction of groundwater level in response to rainfall were built, those are transfer function noise model (TFNM), artificial neural network (ANN), and adaptive neuro fuzzy interference system (ANFIS). The models were applied to time series data of Boen, Cheolsan, and Hongcheon stations in National Groundwater Monitoring Network. The result shows that the model performance of ANN and ANFIS was higher than that of TFNM for the present case study. As lead time increased, prediction accuracy decreased with underestimation of peak values. The performance of the three models at Boen station was worst especially for TFNM, where the correlation between rainfall and groundwater data was lowest and the groundwater extraction is expected on account of agricultural activities. The sensitivity analysis for the input structure showed that ANFIS was most sensitive to input data combinations. It is expected that the time series model approach and results of the present study are meaningful and useful for the effective management of monitoring stations and groundwater resources.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.