• Title/Summary/Keyword: effective inoculum potential

Search Result 14, Processing Time 0.02 seconds

Sporulation of Pyricularia grisea at Different Growth Stages of Rice in the Field

  • Kim, Chang-Kyu;Reiich Yoshino
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.147-150
    • /
    • 2000
  • Sporulation patterns of rice blast fungus were studied at relatively later stages of leaf blast and neck blast seasons in Icheon, Korea. This experiment was done by detaching lesion-bearing leaves and panicle bases. The number of conidia remaining on the leaf blast lesions of different cultivars from Jul 20 to Jul 23 ranged from 3,640 to 82,740 spores. More conidia were observed on the adaxial surface because they were released from abaxial surface. After heading, sporulation was observed from the lesions on the flag leaves but the number of spores was less than in the late July. Detached panicle bases or uppermost internodes infected by Pyricularia grisea produced abundant amount of conidia. Among these panicle bases, 30.1 mm size lesion recorded the highest count of 244,560 spores. When we compared the sporulation amount using the KY-type spore trap, more conidia were recorded from intact lesions than from the lesions which removed conidia and conidiophore The ratio of conidia release against total sporulation ranged from 20.5%-25.0% for leaf blast and 8.2%-25.3% in the neck blast. Effective inoculum potential was also discussed.

  • PDF

Biocontrol Efficacies of Bacillus Species Against Cylindrocarpon destructans Causing Ginseng Root Rot

  • Jang, Ye-Lim;Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.333-341
    • /
    • 2011
  • Two antifungal bacteria were selected from forest soils during the screening of microorganisms antagonistic to Cylindrocarpon destructans, a cause of ginseng root rot. The antifungal bacteria were identified as Bacillus subtilis (I4) and B. amyloliquefaciens (yD16) based on physiological and cultural characteristics, the Biolog program, and 16S rRNA gene sequencing analyses. Antagonistic activity of both bacterial isolates to C. destructans increased with increasing temperature. More rapid starch hydrolytic activity of the bacteria was seen on starch agar at higher temperatures than at lower temperatures, and in the higher density inoculum treatment than in the lower density inoculum treatment. The bacterial isolates failed to colonize ginseng root the root tissues inoculated with the bacteria alone at an inoculum density of $1{\times}10^6$ cfu/ml, but succeeded in colonizing the root tissues co-inoculated with the bacteria and C. destructans. Scanning electron microscopy showed that the pathogen was damaged by the low-density inoculum treatment with the bacterial isolates as much as by the high-density inoculum treatment. Both bacterial isolates were more effective in reducing root rot when they were treated at a concentration of $1{\times}10^6$ cfu/ml than at $1{\times}10^8$ cfu/ml. Also, only the former treatment induced prominent wound periderm formation, related to structural defense against pathogen infection. The results suggest that the bacterial antagonists may have high potential as biocontrol agents against ginseng root rot at relatively low-inoculum concentrations.

Climate change and resilience of biocontrol agents for mycotoxin control

  • Magan, Naresh;Medina, Angel
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.41-41
    • /
    • 2018
  • There has been an impetus in the development of biocontrol agents (BCAs) with the removal of a number of chemical compounds in the market, especially in the European Union. This has been a major driver in the development of Integrated Pest Management systems (IPM) for both pest and disease control. For control of mycotoxigenic fungi, there is interest in both control of colonization and more importantly toxin contamination of staple food commodities. Thus the relative inoculum potential of biocontrol agent vs the toxigenic specie sis important. The major bottlenecks in the production and development of formulations of biocontrol agents are the resilience of the strains, inoculum quality and formulation with effective field efficacy. It was recently been shown for mycotoxigenic fungi such as Aspergillus flavus, under extreme climate change conditions, growth is not affected although there may be a stimulation of aflatoxin production. Thus, the development of resilient biocontrol strains which can may have conserved control efficacy but have the necessary resilience becomes critical form a food security point of view. Indeed, under predicted climate change scenarios the diversity of pests and fungal diseases are expected to have profound impacts on food security. Thus, when examining the identification of potential biocontrol strains, production and formulation it is critical that the resilience to CC environmental factors are included and quantified. The problems in relation to the physiological competence and the relative humidity range over which efficacy can occur, especially pre-harvest may be increase under climate change conditions. We have examined the efficacy of atoxigenic strains of A. flavus and Clanostachys rosea and other candidates for control of A. flavus and aflatoxin contamination of maize, and for Fusarium verticillioides and fumonisin toxin control. We have also examined the potential use of fluidized-bed drying, nanoparticles/nanospheres and encapsulation approaches to enhance the potential for the production of resilient biocontrol formulations. The objective being the delivery of biocontrol efficacy under extreme interacting climatic conditions. The potential impact of climate change factors on the efficacy of biocontrol of fungal diseases and mycotoxins are discussed.

  • PDF

Development of K-Maryblyt for Fire Blight Control in Apple and Pear Trees in Korea

  • Mun-Il Ahn;Hyeon-Ji Yang;Sung-Chul Yun
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.290-298
    • /
    • 2024
  • K-Maryblyt has been developed for the effective control of secondary fire blight infections on blossoms and the elimination of primary inoculum sources from cankers and newly emerged shoots early in the season for both apple and pear trees. This model facilitates the precise determination of the blossom infection timing and identification of primary inoculum sources, akin to Maryblyt, predicting flower infections and the appearance of symptoms on various plant parts, including cankers, blossoms, and shoots. Nevertheless, K-Maryblyt has undergone significant improvements: Integration of Phenology Models for both apple and pear trees, Adoption of observed or predicted hourly temperatures for Epiphytic Infection Potential (EIP) calculation, incorporation of adjusted equations resulting in reduced mean error with 10.08 degree-hours (DH) for apple and 9.28 DH for pear, introduction of a relative humidity variable for pear EIP calculation, and adaptation of modified degree-day calculation methods for expected symptoms. Since the transition to a model-based control policy in 2022, the system has disseminated 158,440 messages related to blossom control and symptom prediction to farmers and professional managers in its inaugural year. Furthermore, the system has been refined to include control messages that account for the mechanism of action of pesticides distributed to farmers in specific counties, considering flower opening conditions and weather suitability for spraying. Operating as a pivotal module within the Fire Blight Forecasting Information System (FBcastS), K-Maryblyt plays a crucial role in providing essential fire blight information to farmers, professional managers, and policymakers.

Screening Procedure of Tobacco Cultivars for Resistant to Bacterial Wilt Caused by Ralstonia solanacearum (담배세균성마름병[립고병(立枯病)]에 대한 담배품종의 저항성 검정법)

  • Jeon, Yong-Ho;Kang, Yue-Gyu
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Bacterial wilt caused by Ralstonia solanacearum has become a severe problem on tobacco in Korea. No effective single control measure is available at present time. One of the most potential way for controlling the bacterial wilt on tobacco is growing tobacco cultivars resistant to the bacterial wilt. In this study, optimal conditions for screening tobacco cultivars resistant to the bacterial wilt were examined to provide reproducible and efficient methods in growth chamber testing and field experiments for evaluating plant disease resistance. For this, already-known inoculation methods, inoculum densities, and incubation temperature, and plant growth stages at the time of inoculation were compared using tobacco cultivars resistant (Nicotiana tabacum cv, NC95), moderately resistant (N. tabacum cv. SPG70), and susceptible (N. tabacum BY4) to the bacterial disease. It was determined that root-dipping of tobacco seedlings at six true leaf stage into the bacterial suspension with inoculum level of $10^8$ colony-forming units (CFU)/ml for 20 min before transplanting was simple and most efficient in testing for resistance to the bacterial wilt of tobacco caused by R. solanacearum, for which disease incidences and severities were examined at 2 weeks of plant growth after inoculation at $20{\sim}25^{\circ}C$ in a growth chamber. These experimental conditions could discriminate one tobacco cultivar from the others by disease severity better than any other experimental conditions. In field testing, the optimum time for examining the disease occurrence was late June through early July. These results can be applied to establishing a technical manual for the screening of resistant tobacco cultivars against the bacterial wilt caused by R. solanacearum.

Potential Appilication of Epicoccosorus nematosporus for the Control of Water chestnut (올방개 지문무늬병균의 효과적 처리방법에 의한 올방개 제초효과)

  • Hong, Yeon-Kyu;Cho, Jae-Min;Uhm, Jae-Youl;Ryu, Kil-Rim;,
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 1997
  • To find optimum application methods of Epicoccosorus nematosporus for control of water chestnut, five different concentration of conidial suspensions ($10^[3}$ conidia/ml to $10^[7}$ conidia/ml) fo the fungus were applied 1 to 4 times on 10~40 days old seedlings of water chestnut in greenhouse. Inoculum levels equal to or greater than $10^[5}$ conidia/ml killed significantly more shoots (82.6%~92.1%) and suppressed significantly underground tuber formation compared to inoculum concentration less than $10^[4}$ conidia/ml. When the conidial suspension of ($6.3 {\times} 10^{5}$conidia/ml of E. nematosporus was sprayed 2 times in 7 days interval, percentage of the killed plants was up to 98.7%. Numbers of reshoots and tubers were alsosuppressed significantly compared to one time application. The percents of killed shoots were similar between 10-day-old and 20-day-old seedlings, and significantly higher than those treated on 30- or 40-day-old seedlings. The fungus treated on 20-day-old seedlings was the most effective because there was high number of reshoots from 10-day-old seedlings. Therefore, optimal application conditions for E. nematosporus is 2~3 times of application in 7 days interval with $10^[5}$ conidia/ml on 20-day-old seedling age.

  • PDF

Control Efficacy of a New Fungicide Fludioxonil on Lettuce Gray Mold According to Several Conditions (발병 조건에 따른 fludioxonil의 상추 잿빛곰팡이병 방제효과)

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.217-221
    • /
    • 2009
  • Fludioxonil is derived from the antifungal compound pyrrolnitrin produced by Pseudomonas pyrrocinia and classified as a reduced-risk fungicide by the US EPA. The efficacy of fludioxonil for the control of lettuce gray mold caused by Botrytis cinerea was evaluated under several conditions such as growth stages of host, inoculum concentrations, and amounts of potato dextrose broth (PDB) included in spore suspension of B. cinerea. At 4-leaf stage of lettuce plants, fludioxonil applied at 2 ${\mu}g$/ml was more effective for the control of gray mold than at 5- and 6-leaf stages. However, fludioxonil at more than 10 ${\mu}g$/ml provided similar control activity in all growth stages of lettuce tested. The fungicide (10 and 50 ${\mu}g$/ml) also gave excellent control of gray mold on lettuce seedlings inoculated with spore suspensions of B. cinerea ($2.5{\times}10^5$ to $2{\times}10^6$ spores/ml). But, control efficacy of fludioxonil (2 ${\mu}g$/ml) was negatively correlated with inoculum concentration. Addition of PDB in spore suspension of B. cinerea resulted in higher disease severity than non-treated control. By inoculating spore suspension including 0.5% PDB, the fungicide gave the most control activity on the disease, followed by 1% and 2% PDB. The results suggest that fludioxonil has potential to control gray mold of lettuce, but the fungicide at a concentration having moderate activity may represent low control efficacy on the disease under some conditions.

Spore Inoculum Effectiveness of Korean and American Strains of Ectomycorrhizal Fungus Pisolithus tinctorius under Nursery Conditions (한국산(韓國産)과 미국산(美國産) 모래밭버섯 균근균(菌根菌)의 리기테다 소나무 파종균(播種苗)에 대한 포자접종효과(胞子接種効果) 비교(比較))

  • Lee, Kyung Joon;Koo, Chang Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.65 no.1
    • /
    • pp.43-47
    • /
    • 1984
  • Pinus rigida ${\times}$ P. taeda seedlings in a nursery was inoculated with basidiospores of Pisolithus tinctorius (Pt) either collected from Suweon, Korea or introduced from U.S.A. to compare the effectiveness of the spores from two different origins as mycorrhizal inocula. Nursery beds were fumigated with methyl bromide and 1g of spores was used to inoculate $1m^2$ of soil surface just before seed sowing. Seedlings inoculated with American Pt (#250 strain from Georgia, U.S.A.) were 15% taller than Korean Pt at the end of the first growing season. The seedlings from fumigation treatment only (no inoculation involved) was slightly taller (statistically unsignificant) than those with Korean Pt, but slightly smaller than those with American Pt. In a subsequent year experiment, the seedlings inoculated with American and Korean Pt after soil fumigation were 66% and 60% taller, respectively, than seedlings infected by natural fungi without soil fumigation, suggesting the dual effects of Pt and fumigation on the seedling growth. Therefore potential of Pt spores for an effective inoculum exists and selection of Pt strains which have adapted to specific local environments is needed to develop better sources of mycorrhizal inocula.

  • PDF

Suppression of Bacterial Wilt with Bacillus subtilis SKU48-2 Strain (Bacillus subtilis SKU48-2에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Kim, Shin-Duk
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Bacterial populations from the rhizosphere were obtained and the efficacy of the bacterial wilt suppression, root colonizing ability and resistance to three kinds of chemical pesticides were assayed. According to these results, SKU48-2 was selected as a potential biological agent to control the bacterial wilt caused by Ralstonia solanacearum. SKU48-2 strain at $10^8CFU/ml$ inoculum was able to suppress the bacterial wilt up to 60% in greenhouse trials. Also, the resistance of SKU48-2 to chemical pesticides make possible to use in combination with chemical pesticides for the control of bacterial wilt. Three different powder formulations of SKU48-2 were developed. The shelf-life of powder formulations was effective up to 6 months of storage. Unformulated bacterial suspension could not be stored for 2 weeks, at which time cell viability was completely lost. According to 16S rDNA sequence data, the SKU48-2 stain was identified as Bacillus subtilis.

Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats

  • Fan, Geng-Jen;Chen, Mei-Hsing;Lee, Churng-Faung;Yu, Bi;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.999-1009
    • /
    • 2022
  • Objective: To improve the feeding value of rice straw (RS), this study evaluated the potential of rice straw fermented with Pleurotus sajor-caju (FRS) as dairy goat feed. Methods: Spent Pleurotus sajor-caju mushroom substrate was used as fungi inoculum to break the lignocellulose linkage of rice straw, which was solid-fermented at 25℃ to 30℃ for 8 weeks. The ruminal degradation of pangolagrass hay (PG), FRS, and RS were measured in situ for 96 hours in three dry Holstein cows, respectively. Effect of fungi fermented RS on milking performance was studied in feeding trials. A total of 21 Alpine goats a trial were divided into 3 groups: a control group in which PG accounted for 15% of the diet dry matter, and FRS or RS was used to replace the PG in the control group. Goats were fed twice a day under two 28-day trial in individual pens. Meanwhile, a 3×3 Latin square trial (14 days/period) was conducted to study the rumen digestion of three diets by using three fistulated dry goats. Rumen contents were collected for metabolite analyses every one to three hours on the last two days. Results: In situ study showed that fermentation could elevate the rumen degradable fraction and effective degradability of RS (p<0.05). Effective degradability of FRS dry matter was significantly increased from 29.5% of RS to 41.7%. Lactating trial results showed that dry matter intake and milk yield in the PG group and FRS group were similar and higher than those in RS group (p<0.05). The concentration of propionic acid and total volatile fatty acid in the RS group tended to be lower than those in PG group (p<0.10). There were no differences in rumen pH value and ammonia nitrogen level among the groups tested. Conclusion: Fermentation of rice straw by spent Pleurotus sajor-caju mushroom substrate could substantially enhance its feeding value to be equivalent to PG as an effective fiber source for dairy goat. The fermented rice straw is recommended to account for 15% in diet dry matter.