• Title/Summary/Keyword: effective humidity

Search Result 445, Processing Time 0.03 seconds

Developing of Forest Fire Occurrence Probability Model by Using the Meteorological Characteristics in Korea (기상특성을 이용한 전국 산불발생확률모형 개발)

  • Lee Si Young;Han Sang Yoel;Won Myoung Soo;An Sang Hyun;Lee Myung Bo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2004
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for the practical purpose of forecasting forest fire danger. Forest fire in South Korea is highly influenced by humidity, wind speed, and temperature. To effectively forecast forest fire occurrence, we need to develop a forest fire danger rating model using weather factors associated with forest fire. Forest fore occurrence patterns were investigated statistically to develop a forest fire danger rating index using time series weather data sets collected from 8 meteorological observation centers. The data sets were for 5 years from 1997 through 2001. Development of the forest fire occurrence probability model used a logistic regression function with forest fire occurrence data and meteorological variables. An eight-province probability model by was developed. The meteorological variables that emerged as affective to forest fire occurrence are effective humidity, wind speed, and temperature. A forest fire occurrence danger rating index of through 10 was developed as a function of daily weather index (DWI).

Analysis of Surface Forces in Micro Contacts between Rough Surfaces (거친 표면간의 미세 접촉에서의 표면력 해석)

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

Field Attenuation of Foam Earplugs

  • Copelli, Fran;Behar, Alberto;Le, Tina Ngoc;Russo, Frank A.
    • Safety and Health at Work
    • /
    • v.12 no.2
    • /
    • pp.184-191
    • /
    • 2021
  • Background: Hearing protection devices (HPDs) are often used in the workplace to prevent hearing damage caused by noise. However, a factor that can lead to hearing loss in the workplace is improper HPD fitting, and the previous literature has shown that instructing workers on how to properly insert their HPDs can make a significant difference in the degree of attenuation. Methods: Two studies were completed on a total of 33 Hydro One workers. A FitCheck Solo field attenuation estimation system was used to measure the personal attenuation rating (PAR) before and after providing one-on-one fitting instructions. In addition, external ear canal diameters were measured, and a questionnaire with items related to frequency of use, confidence, and discomfort was administered. Results: Training led to an improvement in HPD attenuation, particularly for participants with poorer PARs before training. The questionnaire results indicated that much HPD discomfort is caused by heat, humidity, and communication difficulties. External ear canal asymmetry did not appear to significantly influence the measured PAR. Conclusion: In accordance with the previous literature, our studies suggest that one-on-one instruction is an effective training method for HPD use. Addressing discomfort issues from heat, humidity, and communication issues could help to improve the use of HPDs in the workplace. Further research into the effects of canal asymmetry on the PAR is needed.

Possibility of Spreading Infectious Diseases by Droplets Generated from Semiconductor Fabrication Process (반도체 FAB의 비말에 의한 감염병 전파 가능성 연구)

  • Oh, Kun-Hwan;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.111-115
    • /
    • 2022
  • Objectives: The purpose of this study is to verify whether droplet-induced propagation, the main route of infectious diseases such as COVID-19, can occur in semiconductor FAB (Fabrication), based on research results on general droplet propagation. Methods: Through data surveys droplet propagation was modeled through simulation and experimental case analysis according to general (without mask) and mask-wearing conditions, and the risk of droplet propagation was inferred by reflecting semiconductor FAB operation conditions (air current, air conditioning system, humidity, filter conditions). Results: Based on the results investigated to predict the possibility of spreading infectious diseases in semiconductor FAB, the total amount of droplet propagation (concentration), propagation distance, and virus life in FAB were inferred by reflecting the management parameter of semiconductor FAB. Conclusions: The total amount(concentration) of droplet propagation in the semiconductor fab is most affected by the presence or absence of wearing a mask and the line air dilution rate has some influence. when worn it spreads within 0.35~1m, and since the humidity is constant the virus can survive in the air for up to 3 hours. as a result the semiconductor fab is judged to be and effective space to block virus propagation due to the special environmental condition of a clean room.

Efficiency of Removal of Indoor Pollutants by Pistia stratiotes, Eichhornia crassipes and Hydrocotyle umbellata

  • Park, Hye-Min;Lee, Ae-Kyung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, we compared efficiency of different aquatic plants in removing indoor pollutants and examined their potential to purify indoor air. Two liter of water in chamber was used as the control, while the other chambers containing water lettuce (Pistia stratiotes), water hyacinth (Eichhornia crassipes), and water coin (Hydrocotyle umbellata) were used as treatment groups. Temperatures inside all the chambers were maintained between 20 ℃ and 23 ℃. Humidity in the chambers with aquatic plants increased by 30% and 50% control respectively. The removal of formaldehyde per unit leaf area was examined in each aquatic plant. It turned out that water hyacinth removed the highest amount of formaldehyde, followed by water lettuce and water coin. Both water hyacinth and water lettuce increased the amount of removal of formaldehyde until the end of the experiment. In the case of airborne dust (PM 10) and fine dust (PM 2.5), water coin, which had the highest number of leaves, removed more PM 10 and PM 2.5 than the other aquatic plants, with statistically significant difference. In addition, both water coin and water hyacinth smoothly opened and closed stomata before and after the experiment. Consequently, as the aquatic plants were effective in controlling humidity and removing pollutants, they can be used as air purifying plants.

우리나라에서의 증발식 냉각의 효용성

  • Min, Man-Gi
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.3 no.3
    • /
    • pp.199-208
    • /
    • 1974
  • The effectiveness with which evaporative cooling can be used in Korea was analysed by making use of weather data of 15cities in a past decade. In ASHRAE comfort chart for a still air atmospheric condition was divided into two dimensional array, 14 zones by effective temperature and 10 zones by relative humidity, and all hours of weather condition in those zones were. computed from every 4 hours weather data in a past decade. From this computation obtained were for 15 cities : 1. average annual total hours above $23^{\circ}C$ ET 2. effective temperatures with $5\%$ excess factor, and 3. ratios of all hours in wet (above $25.6^{\circ}C$ WBT), intermediate $(22^{\circ}C\;to\;25.6^{\circ}C\;WBT)$, and dry $(below\;22^{\circ}C\;WBT)$ area to total hours in whole area on comfort chart beyond $23^{\circ}C$ ET to effective temperature of $5\%$ excess factor. It was shown from this computational result that in Korea evaporative cooling was not effective for building and residential comfort air conditioning but could be useful for comfort air conditioning in industry and industrial air conditioning, depending upon the air stream velocity and the type of application.

  • PDF

An effective method to reduce the contraction and expansion noise of air conditioner (에어컨 실내기의 수축팽창 소음 저감 방법)

  • Kim, Kang-Hwan;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.98-104
    • /
    • 2020
  • A method to reduce the Contraction and Expansion (CE) noise occurred in an air conditioner is investigated. The noise is measured during the cooling and heating phases in a temperature and humidity chamber to identify the generating phenomenon of CE noise of the air conditioner and the decomposition method is used to estimate its occurrence location. The CE noise of an air conditioner is known to be caused by a stick-slip phenomenon generated by joints of parts connected to the lower decor. Thus a friction experiment was conducted to investigate noise inducing factors. Also, this study established evaluation criteria to effectively analyze the results from friction experiments. Experimental results indicate that increasing surface roughness on both sides of joints is effective. Accordingly, the effect of increased surface roughness on joints of upper and lower decor of air conditioners is evaluated to see its feasibility in a temperature and humidity chamber.

Development of the Surface Forest Fire Behavior Prediction Model Using GIS (GIS를 이용한 지표화 확산예측모델의 개발)

  • Lee, Byungdoo;Chung, Joosang;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.481-487
    • /
    • 2005
  • In this study, a GIS model to simulate the behavior of surface forest fires was developed on the basis of forest fire growth prediction algorithm. This model consists of three modules for data-handling, simulation and report writing. The data-handling module was designed to interpret such forest fire environment factors as terrain, fuel and weather and provide sets of data required in analyzing fire behavior. The simulation module simulates the fire and determines spread velocity, fire intensity and burnt area over time associated with terrain slope, wind, effective humidity and such fuel condition factors as fuel depth, fuel loading and moisture content for fire extinction. The module is equipped with the functions to infer the fuel condition factors from the information extracted from digital vegetation map sand the fuel moisture from the weather conditions including effective humidity, maximum temperature, precipitation and hourly irradiation. The report writer has the function to provide results of a series of analyses for fire prediction. A performance test of the model with the 2002 Chungyang forest fire showed the predictive accuracy of 61% in spread rate.

Porous silicon-based chemical and biosensors (다공질 실리콘 구조를 이용한 화학 및 바이오 센서)

  • Kim, Yun-Ho;Park, Eun-Jin;Choi, Woo-Seok;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2410-2412
    • /
    • 2005
  • In this study, two types of PS substrate were fabricated for sensing of chemical and biological substances. For sensing of the humidity and chemical analyzes such as $CH_3OH$ or $C_2H_5OH$, PS layers are prepared by photoelectrochemical etching of silicon wafer in aqueous hydrofluoric acid solution. To evaluate their sensitivity, we measured the resistance variation of the PS diaphragm. As the amplitude of applied voltage increases from 2 to 6Vpp at constant frequency of 5kHz, the resistance variation for humidity sensor rises from 376.3 to $784.8{\Omega}$/%RH. And the sensitivities for $CH_3OH$ and $C_2H_5OH$ were 0.068 uA/% and 0.212 uA/%, respectively. For biological sensing application, amperometric urea sensors were fabricated based on porous silicon(PS), and planar silicon(PLS) electrode substrates by the electrochemical methods. Pt thin film was sputtered on these substrates which were previously formed by electrochemical anodization. Poly (3-methylthiophene) (P3MT) were used for electron transfer matrix between urease(Urs) and the electrode phase, and Urs also was by electrochemically immobilized. Effective working area of these electrodes was determined for the first time by using $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ redox couple in which nearly reversible cyclic voltammograms were obtained. The $i_p$ vs $v^{1/2}$ plots show that effective working electrode area of the PS-based Pt thin film electrode was 1.6 times larger than the PLS-based one and we can readily expect the enlarged surface area of PS electrode would result in increased sensitivity by ca. 1.6 times. Actually, amperometric sensitivity of the Urs/P3MT/Pt/PS electrode was ca 0.91uA/$mM{\cdot}cm^2$, and that of the Urs/P3MT/Pt/PLS electrode was ca. 0.91uA/$mM{\cdot}cm^2$ in a linear range of 1mmol/L to 100mmol/L urea concentrations

  • PDF

Metal Foam Flow Field Effect on PEMFC Performance (금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2021
  • Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.