• 제목/요약/키워드: effect yarn

Search Result 162, Processing Time 0.024 seconds

Effect of Porosity Characteristics of Hollow Composite Yarns to the Comfort Property of the Fabrics for the High Emotional Garment (중공 복합사 직물의 기공도 특성이 고감성 의류용 직물의 쾌적특성에 미치는 영향)

  • Kim, Hyun Ah;Kim, Young Soo;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.218-229
    • /
    • 2014
  • The wearing comfort of garment is governed by two kinds of characteristics such as moisture and thermal transport properties and mechanical properties of fabrics. The porosity influenced by yarn and fabric structural parameters is known as main factor for wearing comfort of garment related to the moisture and thermal transport properties. This study investigated effect of porosity of composite yarns to the moisture and thermal comfort properties of composite fabrics made of hollow composite DTY and ATY yarns. The theoretical porosity and pore size were inversely proportional to cover factor of fabric, but cover factor was not correlated with experimental pore size. The wicking property of hydrophobic PET filament fabric showed inferior result irrespective of porosity, pore size and cover factor. The drying rate was superior at composite fabrics with high pore size and low cover factor, and pore size was dominant factor for drying property. On the other hand, thermal conductivity of composite fabric was mainly influenced by cover factor and not influenced by porosity. Air permeability was influenced by both porosity and cover factor and was highly increased with increasing porosity and decreasing fabric cover factor.

Effect of Blend Ratio and Fabric Structural Factor Affecting Garment Formability of Wool/Polyester Blend Fabric (울/폴리에스터 혼방직물의 혼용율과 직물 구조인자가 의류의 입체성형성에 미치는 영향)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.22 no.4
    • /
    • pp.515-522
    • /
    • 2020
  • This study examined the effect of the blend ratio of wool and polyester fibers, yarn and fabric structural parameters to the appearance property and the formability of worsted fabrics. The mechanical properties of twenty types of manufactured worsted and PET/wool blend fabrics were measured using KES-FB and FAST systems. Garment formability increases with the thickness and cover factor as well as increases with wool content. The correlation between KES-FB and FAST system showed a relatively high correlation with an extensibility of 0.98, bending and shear rigidity 0.71; both were higher than polyester synthetic fiber. The correlation coefficient of garment formability between KES-FB and FAST systems was 0.93 and the correlation coefficient between formability and fabric extensibility was 0.8. These results were higher than those of bending and shear rigidity. This revealed that garment formability was influenced by wool content, cover factor and fabric thickness; however, wool content and fabric thickness were the most important factors for the seam pucker. The garment formability of the worsted fabrics can be predicted by fabric mechanical properties measured from KES-FB and FAST systems.

Effect of Manufacturing Condition on the Physical Properties of TTD Yarns with Hot Plate Device (Hot Plate장치를 이용한 TTD사 제조조건에 따른 사의 물성변화 연구)

  • Song, Min-Kyu;Kim, Hi-Dong;Kwon, Oh-Kyung
    • Fashion & Textile Research Journal
    • /
    • v.7 no.2
    • /
    • pp.247-251
    • /
    • 2005
  • In this the study, the effects of the manufacturing process conditions on the properties Thick and Thin Diameter yarns(TTD yarns) prepared with hot plate device in the draw winder were determined. Physical properties including wet shrinkage, tenacity and elongation of the samples were measured and thick and thin effect was analysed with the evenness tester. The results were as the follows: There was little change the wet shrinkage of the TTD yarns in the range of $70^{\circ}C{\sim}80^{\circ}C$ of $R_1$ temperature(lower hot cylinder) with the same Hot Plate(H/P) temperature, but the wet shrinkage of the TTD yarns decreased 5-10% when $R_1$ temperature was $90^{\circ}C$. The wet shrinkage of the TTD yarns decreased with the H/P temperature at the same temperature of $R_1$. There was little effect of $R_1$ and H/P temperature on the tenacity of TTD yarns. The elongation of TTD yarns increased with $R_1$ temperature at the same H/P temperature. The elongation of TTD yarns increased little bit for the first time and then decreased above that temperature with increasing H/P temperature at the same $R_1$ temperature. The thick and thin effect on the TTD yarns was obvious in $110^{\circ}C$ of H/P temperature regardless of $R_1$ temperature, while there was no thick and thin effect on the TTD yarns in $140^{\circ}C$ of H/P temperature.

Blending Effect on the Mechanical and Hand Properties of Wool/Acrylic Blend Knits

  • Park Myung-Ja
    • The International Journal of Costume Culture
    • /
    • v.8 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • Mechanical properties and hand evaluation of wool/acrylic(W/A) blend knits were conducted before and after repeated washing to get the optimum W/A blending ratio, which could help achieve the optimum mechanical and hand properties of the knits. The five test fabrics using the yarns with different W/A blending ratios($\%$), 100/0, 70/30, 50/50, 30/70, 0/100, were knitted. The fabrics were washed by a rotating drum type washing machine. Then, objective mechanical and hand properties were evaluated by KES-FB, Kawabata evalution system for fabric. The results are as follows: there was no change in the hand value of the knitted fabric with the W/A-blended yarn caused by the change in the blending ratio before washing. After washing, however, the increase of acrylic's blending rate caused the bending property to decrease proportionally, while the friction coefficient of the surface property increased. Furthermore, the study showed that W/A 50/50 possesses the most superior tensile property and shearing property, which could attain the optimum blending ratio. Similar results in hand value were derived in all the samples. After washing, however, the increase in acrylic's blending rate caused a proportional decrease in KOSHI and an increase in FUKURAMI. In addition, W/A 50/50 gained the biggest NUMERI value, again corresponding to the optimum blending ratio. Similar results in total hand value were derived in all the samples before washing. After washing, though, all the total hand values decreased, and, as the wool fabric's blending rate increased, the total hand values proportionally decreased further.

  • PDF

Recycling Technology of Sewage Sludge by Carbonization

  • Park, Sang-U;Jang, Cheol-Hyeon;Kim, Nak-Ju
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.161-165
    • /
    • 2004
  • This study has been conducted to develop a new recycling technology of sewage sludge using a carbonization process. The carbonizing yield, the calorific value and EC(electric conductivity) of carbonized sewage sludge had a tendency to be decreased with increase of the carbonizing temperature and time, but pH and the C/N were increased with increase the carbonizing temperature and time. The whole pore volume of carbonized sludge processed in the carbonizing furnace was /g, which was smaller than that in the electric furnace. But, the rates of mesopore and macropore were found to account for 100% therein. Rate of color and organic materials removal for dyeing wastewater were determined 70~97%, 78~83% on cotton yarn, 88~96%, 69~80% on wool wastewater and 77~89%, 77~87% on towel compared with powder activated carbon. Effect of carbonized sludge on chrysanthemum growth was investigated. Plant height and number of leaves was better mixture of carbonized sludge than comparison.

Mechanical Properties of Jute Fiber Reinforced Thermosetting Composites (황마섬유 보강 열경화성 복합재료의 기계적 특성)

  • Lee, C.H.;Song, J.E.;Nam, W.S.;Byun, J.H.;Kim, B.S.;Hwang, B.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.111-115
    • /
    • 2005
  • Recently, natural fibers draw much interests in composite industry due to low cost, light weight, and environment-friendly characteristics compared with glass fibers. In this study, mechanical properties were evaluated for two extreme cases of jute fiber orientations, i.e. the unidirectional yarn composites and the felt fabric composites. Samples of jute fiber composites were fabricated by RTM process using epoxy resin, and tensile, compression, and shear tests were conducted. As can be expected, unidirectional fiber specimens in longitudinal direction showed the highest strength and modulus. Compared with glass/epoxy composites of the similar fabric architecture and fiber volume fraction, the tensile strength and modulus of jute felt/epoxy composites reached only 40% and 50% levels. However, the specific tensile strength and modulus increased to 80% and 90% of the glass/epoxy composites. The main reason for the poor mechanical properties of jute composites is associated with the weak interfacial bonding between fiber and matrix. The effect of surface treatment of jute fibers on the interfacial bonding will be examined in the future work.

  • PDF

Images of Hanji-Bedclothes According to Bedclothes Shopping Orientation (침구 쇼핑성향에 따른 한지 침구류 이미지 평가에 관한 연구)

  • Ju, Jeongah;Kim, Hyunchul
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.2
    • /
    • pp.174-185
    • /
    • 2013
  • This study examines shopping orientation regarding bedclothes and the effect of the segmentation of consumers on the image of Hanji yarn bedclothes derived from mulberry fiber in order to contribute to the development of Hanji bedclothes products and consumer marketing segmentation. Data from 294 questionnaires filled out by female consumers in their 30s to 50s were used for statistical analysis. The shopping orientations for bedclothes are classified into six groups (trend oriented, material oriented, price oriented, convenience oriented, individuality oriented, and assurance oriented). Consumers were subdivided into four consumer segments (show-offish, self-confident, reasonable, and unconcerned case) based on shopping orientations for bedclothes. The images of Hanji bedclothes are categorized into four types (classic, practical, aesthetic, and natural) as related to the shopping orientations of consumers. In terms of consumer segmentation, the 'reasonable' segment is more likely to consider the 'classic' image of Hanji bedclothes as the highest image value; however, the 'show-offish' segment provides the highest value to the 'practical' image as compared to other segments.

Study on Dyeing Properties of Nylon 66 Nano Fiber (1) -Levelling Type Acid Dyes- (나일론 66 나노섬유의 염색성에 관한 연구(1) -균염성 산성염료-)

  • 이권선;이범수;박영환;김성동;김용민;오명준;정성훈
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • In recent, development of nano fiber has been one of the most active subjects in the world. Nano fiber is defined as a ultra fine yarn with a diameter unit of $10-100\times10^{-9}meter$, which is possible to be produced by an electro-spinning technology. In this study, physical characteristics and dyeing properties of nylon 66 nano fiber were investigated. Nylon 66 nano fiber was dyed with levelling type acid dyes. X-ray diffraction method and DSC analysis were used for the measurement of the degree of crystallization. Analysis of amino end groups was also performed in order to examine a relationship between number of amino groups and its dyeing property as well as water absorption behavior. The maximum exhaustion % of dyes and dyeing rate under various dyeing conditions, such as dyeing temperature and pH in dye bath, along with build-up properties for 2 acid dyes were evaluated. It was found that the degree of crystallization of nano fiber was smaller than that of regular fiber, and amino end groups of nano fiber were less than regular fiber. Half dyeing time of nano fiber was shorter than regular fiber because of the bigger specific surface area. Effect of pH on exhaustion % was small in case of nano fiber. Exhaustion of nano fiber increased with higher concentration of dye.

Dyeing and Functional Properties of Cotton-Modal-Chitosan Blended Towel Fabric Dyed with Mugwort Colorants (면-모달-키토산 혼방타월의 쑥에 대한 염색성과 기능성)

  • Kim, Sung-Hee;Choi, Mee-Sung;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.14-22
    • /
    • 2016
  • The objective of this study is to develop eco-friendly, functional towel material utilizing cotton-Modal-chitosan blended(C-M-CH) yarn and natural dyeing with mugwort colorants. Dyeing properties of towels with mugwort colorants were studied by investigating the effect of dyeing conditions including concentration of mugwort colorants, dyeing temperature, and dyeing time, and the effects of mordants on dye uptakes were investigated. The C-M-CH towel showed better dye uptake than 100% cotton towel with mugwort colorants. The shade of towels got darker and red-yellowish tint increased by mordanting. Comparing with 100% cotton towel, the colorfastness of dyed C-M-CH towel was satisfactory showing above 3 grade which is the lowest grade to washing fastness. The antibacterial activity against Staphylococcus aureus and deodorization performance of towels were excellent and improved by dyeing with mugwort colorants. From the results obtained, it is concluded that the cotton-Modal-chitosan blended towel dyed with mugwort colorants can be used practically for an eco-friendly and multi-functional towel materials with excellent absorbance and drying properties.

The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mild Steel

  • Ozkir, Demet;Kayakirilmaz, Kadriye
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study covers the stages of testing whether the azo dye with chemical name (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc (II) chloride (DMT), known as Maxilon Red GRL in the dye industry, can be used as an anticorrosive feasible inhibitory agent, especially in industrial areas other than carpet, yarn and fibre dyeing. These test stages consist of the electrochemical measurement techniques such as potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) for diverse concentrations and durations. The adsorption of the viewed DMT molecule on the mild steel surface obeyed the Langmuir isotherm. The zero charge potential (PZC) of mild steel was also found to assess the inhibition mechanism in containing DMT solution. The inhibition performance of DMT on the mild steel in a 1.0 M HCl solution was also investigated using methods such as metal microscope, atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM).