• Title/Summary/Keyword: effect of compaction

Search Result 403, Processing Time 0.024 seconds

Evaluations on the Compaction Energy Effects on the Soil Compaction at Sub-Zero Temperature (영하에서의 다짐에너지에 따른 다짐 효과 평가)

  • Lee, Jeonghyeop;Hwang, Bumsik;Chae, Deokho;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.13-20
    • /
    • 2015
  • Due to the population growth and exhaustion of resource, the development on the harsh environment such as cold weather is emerging as an alternative for new resource development. The permafrost area covers about 14 percent of the world's land area and the global construction market for such area is rapidly expanded. Whereas the developed countries have already recognition of the need for research of coldest place and invested heavily in technology development, the domestic technology for the coldest place development is less developed and related research has rarely been performed. There is not a detailed national specification standard for the strength and deformation properties of the earthworks at sub-zero temperature but simple field directions. Therefore, the D compaction tests were conducted on the sand with fine contents of 0%, 5%, 10% and 15% at room temperature ($18^{\circ}C$), $-3^{\circ}C$ and $-8^{\circ}C$ to investigate the effect of the compaction energy on the compacted soils at sub-zero temperatures. Based on the test results, the larger compaction energy, the larger maximum dry unit weight under sub-zero temperature and D type compaction at $-3^{\circ}C$ show similar max. dry unit weights as those obtained from the compaction at the room temperature. However, compaction at $-8^{\circ}C$ showed significant performance degradation regardless of the compaction energy.

A Study on the Selection of Compaction Method in Order to Utilize the Waste Landfill Selected Soils (폐기물매립장 선별토사 활용을 위한 다짐공법 선정에 관한 연구)

  • Nam, Hong-Ki;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.29-40
    • /
    • 2017
  • In this study, the dynamic compaction method was selected by analyzing field situation, soil condition data and compaction test characteristics of the special selected soils, and the compaction method for using the selected soils as the site restoration soil of the ${\bigcirc}{\bigcirc}$ city non-sanitary landfill maintenance project. The N value in the standard penetration test (SPT) before and after dynamic compaction increased by an average of 89% over the range 12~18, and the allowable bearing capacity of the plate bearing test (PBT) was ranged $150{\sim}227kN/m^2$, at least 80% higher than that before test. As a result, it can be seen that the same tendency as the dynamic compaction effect applied to the existing dredging and waste landfill is shown.

Experimental Study on Bearing Capacity of Ground Treated by Sand Compaction Piles (모래다짐말뚝(SCP) 시공지반의 지지력에 관한 실험적 연구)

  • 김병일;김영욱;이상익;최용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • The SCP(sand compaction pile) method which is a vertical reinforcing technique for soft ground using a sand compaction pile has received increasing popularity in Korea. Currently, there are different methods to evaluate the bearing capacity of the reinforced ground by the SCP method. However, a method that can consider the effect of the replacement ratio on the bearing capacity is not yet available. This study investigated the effect of the replacement ratio on the bearing capacity of the reinforced ground by the SCP method. The study involved laboratory experiments which were conducted on a centrifuge facility. Test conditions included various ranges of replacement ratios (20, 30, and 40%), centrifuged consolidation, and loading. From the results of the study, a method which can evaluate the bearing capacity of the reinforced ground was proposed and verified using the weighted average of the replacement ratio.

Analysis of Ground Improvement Effect of Low Vibration Sand Compaction Pile Method (저진동 모래다짐말뚝(LVSCP)의 지반개량효과 분석)

  • Kim, Jong-Kook;Cha, Jun-Tae;Lee, Jae-Chang;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1234-1242
    • /
    • 2010
  • In this study, the effect of noise and vibration, and influence of ground improvement are evaluated and its application is analyzed through the example of SCP designed at ground improvement in Song-Do international city. consequently, it showes even comfortable result that it is about 5.0m of inner space, when the LVSCP method is applied, rather than that it is about 30m of inner space when the existing SCP is applied in vibration control standards 2.0mm/sec. In the noise, now that the many differences according to environmental factors like other equipment noise, limited space and so on at the time of the construction by LVSCP method are coming out, so we think that appro itate measures are needed according to surroundings. By the way, when it comes to the estimation of the ground improvement work before and after an improvement of LVSCP method, its result shows that it is satisfacttion to all the standards of compaction control in dregded and reclaimed ground and sedimentary clay layer.

  • PDF

A Study on Soil Stress and Contact Pressure of Tire (타이어 접지압과 토양속 응력분포에 관한 연구)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2001
  • This study was carried out to investigate the effect of three factors(dynamic load, inflation pressure and multiple passes of the tire) on the contact pressure and the soil stresses under the tire. A series of soil bin experiment was conducted with a 6.00R14 radial-ply tire for sandy loam soil. Tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth were measured for the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.69kPa), and for five different number of passes(1, 2, 3, 4 and 5 pass). The following results were drawn from this study 1) As dynamic load, inflation pressure and number of passes of the tire increased, tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth increased accordingly. Thus increased in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2) The effect of three different factors, or dynamic load, inflation pressure and number of passes of the tire, decreased as the soil depth increase. Consequently, it was found that the soil compaction at a shallow depth in soil is larger than that at deep place in soil. 3) The increase of dynamic load and number of passes increased soil stress exponentially, but the increase of inflation pressure increased soil stress linearly. The effect of tire inflation pressure on soil stress was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load is more important factor affecting soil compaction in comparison to the inflation pressure of tire.

  • PDF

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

Centrifugal Model Test on Behavior of Underground Corrugated Steel Plate with Compaction Degree (다짐도에 따른 지중파형강판의 거동에 대한 원심모형실험)

  • Heo, Yol;Kwon, Seonuk;Kim, Hongjong;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.83-90
    • /
    • 2011
  • A series of centrifugal model test was conducted to investigate the distribution of vertical earth pressure on circular ductile underground corrugated steel plate waterway culvert with considering the compaction degree of the backfill in the high landfilled embankment section. The compaction degree of backfill was varied to 80, 85, 90, and 95% at the 53g-level gravity considering the similarity of the site. As a result of this test, the load reduction factor by the arching effect of the top of corrugated steel plate showing ductile behavior nearly agreed with the load reduction factor according to the compaction degree of backfill specified in the AISI(2002) design method. The vertical earth pressure measured at the top of the corrugated steel plate was linearly decreased as the compaction degree increased. The greater the compaction degree of backfill was, the greater the reduction of surface loading on the top of the corrugated steel plate by arching effect. The load decreased by arching effect on top of the corrugated steel plate was transferred to the side backfill of the corrugated steel plate(EP 1) and the outside of backfill(EP 3).

The Effect of Particle Size and Compaction Pressure on the Thermoelectric Properties of n-type FeSi2 (N형 FeSi2의 열전특성에 미치는 입자크기 및 성형압력의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4835-4841
    • /
    • 2015
  • The effect of particle size and compaction pressure on the thermoelectric properties of n-type $FeSi_2$ was investigated. The starting powders with various particle size were pressed into a compact (compaction pressure; $70{\sim}220kg/cm^2$). The compact specimens were sintered at 1473 K for 7 h and annealed at 1103 K for 100 h under Ar atmosphere to transform to the semiconducting ${\beta}$-phase. The microstructure and phases of the specimens were observed by SEM, XRD and EDS. The electrical conductivity and Seebeck coefficient were measured simultaneously for the same specimen at r.t.~1023 K in Ar atmosphere. The electrical conductivity increased with decreasing particle size and hence the increases of relative density of the sintered body and the amount of residual metallic phase ${\varepsilon}$-FeSi due to a increase of the electrical conductivity. The Seebeck coefficient exhibited the maximum value at about 700~800 K and decreased with decreasing particle size. This must be due to a increase of residual metallic phase ${\varepsilon}$-FeSi. On the other hand, the change of compaction pressure appeared to have little effect on the thermoelectric properties. Consequently, the power factor would be affected more by particle size than compaction pressure.

Optimization of powder compaction parameters for the pressureless sintered ZTA (상압소결 ZTA의 분말 성형 공정 최적화)

  • 신동우;김경도;박삼식;임창성;이수완
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.356-364
    • /
    • 1998
  • The dependence of green and sintered densities of Zirconia-Toughened Alumina ($ZTA:\;Al_2O_3/\;15\;vol{%}\;ZrO_2$) on the properties of spray-dried granules was studied thoroughly to establish the optimum compaction condition leading to high reproducibility in the light of sintered density. The sphericity, mean size, degree of hollow occurrence and moisture content of spray-dried granules were largely different in between the granule containing binder and the ones with no binder. The effect of these differences in the characteristic of granules on the compaction behavior was examined in terms of the compaction pressure from 80 MPa to 120 MPa 10 MPa increment and the compaction method, i.e., uniaxial and cold isostatic pressing. This work confirmed that the reproducibility of sintered density caused by the variation of granule property could be improved by the optimization of compaction process. The variation of sintered density was controlled within 1 % deviation by compacting the granules under a relatively low pressure of 80 MPa in an uniaxial forming and subsequent cold isostatic pressing at high pressure of 500 MPa.

  • PDF

Deformational Characteristics of Compacted Subgrade Soils in Korea with Specimen Construction Methods (시편 성형기법에 따른 국내 다짐 노상토의 변형특성)

  • Kweon, Gi-Chul;Hwang, Chang-Il
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.55-63
    • /
    • 2007
  • Deformational characteristics of subgrade soils are important properties in the mechanistic analysis and design of pavement system. In this study, to evaluate the effect of specimen construction methods on deformational characteristics of subgrade soils in Korea, resonant column tests were performed for specimens constructed by various methods. Specimen construction method affected to the modulus value but the variation in the normalized modulus reduction curve was almost identical. The effects of specimen construction method on modulus are decreased with increasing confining pressure. The average maximum variation in the modulus value with different specimen construction methods was estimated as 16.8%. The differences in the modulus value of the specimens with same water content and dry density conditions that made by gyratory compaction and impact compaction were very small within 5.2%. The impact compaction method was proposed as a specimen construction method for determining the design input parameter testing considering that impact compaction method is much simpler and require less expensive specimen construction equipment and setup than gyratory compaction method.

  • PDF