• Title/Summary/Keyword: eelLHR

Search Result 3, Processing Time 0.016 seconds

Signal Transduction of Eel Luteinizing Hormone Receptor (eelLHR) and Follicle Stimulating Hormone Receptor (eelFSHR) by Recombinant Equine Chorionic Gonadotropin (rec-eCG) and Native eCG

  • Byambaragchaa, Munkhzaya;Lee, So-Yun;Kim, Dae-Jung;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • Previous studies showed that recombinant equine chorionic gonadotropin ($rec-eCG{\beta}/{\alpha}$) exhibits both follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-like activities in rat LHR- and FSHR-expressing cells. In this study, we analyzed signal transduction by eelFSHR and eelLHR upon stimulation with $rec-eCG{\beta}/{\alpha}$ and native eCG. The cyclic adenosine monophosphate (cAMP) stimulation in CHO-K1 cells expressing eelLHR was determined upon exposure to different doses (0-1,450 ng/mL) of $rec-eCG{\beta}/{\alpha}$ and native eCG. The $EC_{50$ values of $rec-eCG{\beta}/{\alpha}$ and native eCG were 172.4 and 786.6 ng/mL, respectively. The activity of $rec-eCG{\beta}/{\alpha}$ was higher than that of native eCG. However, signal transduction in the CHO PathHunter Parental cells expressing eelFSHR was not enhanced by stimulation with both agonist $rec-eCG{\beta}/{\alpha}$ and native eCG. We concluded that $rec-eCG{\beta}/{\alpha}$ and native eCG were completely active in cells expressing eelLHR, similar to the activity in the mammalian cells expressing LHRs. However, $rec-eCG{\beta}/{\alpha}$ and native eCG did not invoke any signaling response in the cells expressing eelFSHR. These results suggest that eCG has a potent activity in cells expressing eelLHR. Thus, we also suggest that $rec-eCG{\beta}/{\alpha}$ can induce eel maturation by administering gonadotropic reagents (LH), such as salmon pituitary extract.

Constitutive Activating Eel Luteinizing Hormone Receptors Induce Constitutively Signal Transduction and Inactivating Mutants Impair Biological Activity

  • Byambaragchaa, Munkhzaya;Choi, Seung-Hee;Kim, Dong-Wan;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.25 no.3
    • /
    • pp.133-143
    • /
    • 2021
  • In contrast to the human lutropin receptor (hLHR) and rat LHR (rLHR), very few naturally occurring mutants in other mammalian species have been identified. The present study aimed to delineate the mechanism of signal transduction by three constitutively activating mutants (designated M410T, L469R, and D590Y) and two inactivating mutants (D383N and Y546F) of the eel LHR, known to be naturally occurring in human LHR transmembrane domains. The mutants were constructed and measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary (CHO)-K1 cells. The activating mutant cells expressing eel LHR-M410T, L469R, and D590Y exhibited a 4.0-, 19.1-, and 7.8-fold increase in basal cAMP response without agonist treatment, respectively. However, inactivating mutant cells expressing D417N and Y558F did not completely impaired signal transduction. Specifically, signal transduction in the cells expressing activating mutant L469R was not occurred with a further ligand stimulation, showing that the maximal response exhibited approximately 53% of those of wild type receptor. Our results suggested that the constitutively activating mutants of the eel LHR consistently occurred without agonist treatment. These results provide important information of LHR function in fish and regulation with regard to mutations of highly conserved amino acids in glycoprotein hormone receptors.

Cell-Surface Loss of Constitutive Activating and Inactivating Mutants of Eel Luteinizing Hormone Receptors

  • Byambaragchaa, Munkhzaya;Choi, Seung-Hee;Kim, Dong-Wan;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.225-234
    • /
    • 2021
  • The present study aimed to investigate the mechanism of cell surface receptor loss by two constitutively activating mutants (designated L469R, and D590Y) and two inactivating mutants (D417N and Y558F) of the luteinizing hormone receptor (LHR) in the Japanese eel Anguilla japonica, known to naturally occur in human LHR transmembrane domains. We investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in HEK 293 cells. The expression level of wild-type eel LHR was considered to be 100%, and the expression levels of L469R and D417N were 97% and 101%, respectively, whereas the expression levels of D590Y and Y558F slightly increased to approximately 110% and 106%, respectively. The constitutively activating mutants L469R and D590Y exhibited a decrease in cell surface loss in a manner similar to that of wild-type eel LHR. The rates of loss of cell surface agonist-receptor complexes were observed to be very rapid (2.6-6.2 min) in both the wild-type eel LHR and activating mutants. However, cell surface receptor loss in the cells expressing inactivating mutants D417N and Y558F was slightly observed in the cells expressing inactivating mutants D417N and Y558F, despite treatment with a high concentration of agonist. These results provide important information on LHR function in fish and the regulation of mutations of highly conserved amino acids in glycoprotein hormone receptors.