• Title/Summary/Keyword: editing

Search Result 1,078, Processing Time 0.026 seconds

Utilization Strategies of Generative AI Platforms for CG Education (CG 교육을 위한 생성형 인공지능 플랫폼 활용 방안)

  • Donghee Suh
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.357-364
    • /
    • 2023
  • Due to the rapid advancement of AI technology, generative artificial intelligence platforms are experiencing innovative applications in various fields. In this paper, it examines research cases involving the utilization of AI in education, explore instances where generative AI platforms are applied in the realm of creative endeavors, and discuss the direction of utilizing generative AI in educational contexts. In the field of computer graphics, this study introduced generative AI platforms that are applicable for image creation, editing, and video editing. It also proposed platforms that can be utilized in the video editing production process. These generative AI platforms not only offer advantages in terms of efficiency, by reducing the efforts of creators and saving time in the production process, but they also present positive aspects in enhancing individual capabilities. It is advocated that their swift integration into education is necessary, considering these benefits. This study aims to provide direction for the expansion of creative education utilizing generative AI platforms.

Biogenesis of Lysosome-related Organelle Mutant Silkworms by Direct Injection of a Cas9 Protein-guided RNA Complex into Bombyx mori Embryos (Cas9 단백질/ 가이드 RNA 복합체를 이용한 누에 BmBLOS 유전자 편집)

  • Kim, Kee Young;Yu, Jeong Hee;Kim, Su-Bae;Kim, Seong-Wan;Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Jong Gil;Park, Jong Woo
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2019
  • Genome editing technology employing gene scissors has generated interest in molecular breeding in various fields, and the development of the third-generation gene scissors of the clustered, regularly interspaced short palindromic repeat (CRISPR) system has accelerated the field of molecular breeding through genome editing. In this study, we analyzed the possibility of silkworm molecular breeding using gene scissors by genomic and phenotypic analysis after editing the biogenesis of lysosome-related organelles (BmBLOS) gene of Bakokjam using the CRISPR/Cas9 system. Three types of guide RNAs (gRNA) were synthesized based on the BmBLOS gene sequence of Bakokjam. Complexes of the prepared gRNA and Cas9 protein were formed and introduced into Bombyx mori BM-N cells by electroporation. Analysis of the gene editing efficiency by T7 endonuclease I analysis revealed that the B4N gRNA showed the best efficiency. The silkworm genome was edited by microinjecting the Cas9/B4N gRNA complex into silkworm early embryos and raising the silkworms after hatching. The hatching rate was as low as 18%, but the incidence of mutation was over 40%. In addition, phenotypic changes were observed in about 70% of the G0 generation silkworms. Sequence analysis showed that the BmBLOS gene appeared to be a heterozygote carrying the wild-type and mutation in most individuals, and the genotype of the BmBLOS gene was also different in all individuals. These results suggest that although the possibility of silkworm molecular breeding using the CRISPR/Cas9 system would be very high, continued research on breeding and screening methods will be necessary to improve gene editing efficiency and to obtain homozygotes.

A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system (벼에서 CRISPR/Cas9 활용 고빈도 유전자 편집 방법)

  • Jung, Yu Jin;Bae, Sangsu;Lee, Geung-Joo;Seo, Pil Joon;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.89-96
    • /
    • 2017
  • The CRISPR/Cas9 is a core technology that can result in a paradigm for breeding new varieties. This study describes in detail the sgRNA design, vector construction, and the development of a transgenic plant and its molecular analysis, and demonstrates how gene editing technology through the CRISPR/Cas9 system can be applied easily and accurately. CRISPR/Cas9 facilitates targeted gene editing through RNA-guided DNA cleavage, followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. It also allows the generation of heritable-targeted gene mutations and corrections. Here, we present detailed procedures involved in the CRISPR/Cas9 system to acquire faster, easier and more cost-efficient gene edited transgenic rice. The protocol described here establishes the strategies and steps for the selection of targets, design of sgRNA, vector construction, and analysis of the transgenic lines. The same principles can be used to customize the versatile CRISPR/Cas9 system, for application to other plant species.

Shot Transition Effects for MPEG - 1 Video Stream in Compressed Domain (MPEG-1 비디오 스트림에 대한 압축 영역에서의 장면 전환 효과 처리)

  • Lee, Seung-Cheol;Nang, Jong-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.2
    • /
    • pp.109-122
    • /
    • 2000
  • As the full-motion videos in MPEG are widely available nowadays, an editor that could easily edit such kind of media data is required to develop various multimedia applications. In order to concatenate and apply a transition effect to two video streams encoded in MPEG, they should be decoded first since there are dependencies in the frames in MPEG-encoded video stream. Since this decode-edit-encode process requires a huge amount of computing/storage resources, a new editing scheme that could apply various transition effects to MPEG video streams directly while keeping the quality of video data is strongly required. This paper proposes a new editing scheme that could apply three transition effects (such as fade-in, fade-out, and dissolve) to MPEG video streams in a compressed domain. In the proposed scheme, an extension of previous method in which the frames are partially decompressed and transition effects are applied is adopted for I- and P-frames. In addition, a new processing scheme for B-frame that could apply the transition effects in DCT domain directly using an approximation of motion compensation based on the motion vector to reference frames. Since this processing scheme could apply the transition effects in a compressed domain directly, the editing process could be speed-up about $3{\sim}4$ times faster than previous decode-edit-encoding method while keeping the quality of video data as good as the source data. The proposed scheme could be used to build a software-only MPEG video editing system that helps to edit MPEG video data even on a low-cost desk-top computer.

  • PDF

In-Situ based Trajectory Editing Method of a 3D Object for Digilog Book Authoring (디지로그 북 저작을 위한 3D 객체의 In-Situ 기반의 이동 궤적 편집 기법)

  • Ha, Tae-Jin;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2010
  • A Digilog Book is an augmented reality (AR) based next generation publication supporting both sentimental analog emotions and digitized multi-sensory feedbacks by combining a conventional printed book and digital contents. As a Digilog Book authoring software, ARtalet provides an intuitive authoring environment through 3D user interface in AR environment. In this paper, we suggest ARtalet authoring environment based trajectory editing method to generate and manipulate a movement path of an augmented 3D object on the Digilog Book. Specifically, the translation points of the 3D manipulation prop is examined to determine that the point is a proper control point of a trajectory. Then the interpolation using splines is conducted to reconstruct the trajectory with smoothed form. The dynamic score based selection method is also exploited to effectively select small and dense control points of the trajectory. In an experimental evaluation our method took the same time and generated a similar amount of errors as the usual approach, but reduced the number of control points needed by over 90%. The reduced number of control points can properly reconstruct a movement path and drastically decrease the number of control point selections required for movement path modification. For control manipulation, the task completion time was reduced and there was less hand movement needed than with conventional method. Our method can be applicable to drawing or curve editing method in immersive In-Situ AR based education, game, design, animation, simulation application domains.

  • PDF

Recessive Resistance: Developing Targets for Genome Editing to Engineer Viral Disease Resistant Crops (바이러스 열성 저항성: 병저항성 작물 개발을 위한 유전자 교정 소재 발굴 연구의 동향)

  • Han, Soo-Jung;Heo, Kyeong-Jae;Choi, Boram;Seo, Jang-Kyun
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.49-61
    • /
    • 2019
  • Plant viruses are among the important pathogens that cause severe crop losses. The most efficient method to control viral diseases is currently to use virus resistant crops. In order to develop the virus resistant crops, a detailed understanding of the molecular interactions between viral and host proteins is necessary. Recessive resistance to a pathogen can be conferred when plant genes essential in the life cycle of a pathogens are deficient, while dominant resistance is mediated by host resistance (R) genes specifically interacting with effector proteins of pathogens. Thus, recessive resistance usually works more stably and broadly than dominant resistance. While most of the recessive resistance genes have so far been identified by forward genetic approaches, recent advances in genome editing technologies including CRISPR/Cas9 have increased interest in using these technologies as reverse genetic tools to engineer plant genes to confer recessive resistance. This review summarizes currently identified recessive resistance genes and introduces reverse genetic approaches to identify host interacting partner proteins of viral proteins and to evaluate the identified genes as genetic resources of recessive resistance. We further discuss recent advances in various precise genome editing technologies and how to apply these technologies to engineer plant immunity.

Automatic Video Editing Technology based on Matching System using Genre Characteristic Patterns (장르 특성 패턴을 활용한 매칭시스템 기반의 자동영상편집 기술)

  • Mun, Hyejun;Lim, Yangmi
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.861-869
    • /
    • 2020
  • We introduce the application that automatically makes several images stored in user's device into one video by using the different climax patterns appearing for each film genre. For the classification of the genre characteristics of movies, a climax pattern model style was created by analyzing the genre of domestic movie drama, action, horror and foreign movie drama, action, and horror. The climax pattern was characterized by the change in shot size, the length of the shot, and the frequency of insert use in a specific scene part of the movie, and the result was visualized. The model visualized by genre developed as a template using Firebase DB. Images stored in the user's device were selected and matched with the climax pattern model developed as a template for each genre. Although it is a short video, it is a feature of the proposed application that it can create an emotional story video that reflects the characteristics of the genre. Recently, platform operators such as YouTube and Naver are upgrading applications that automatically generate video using a picture or video taken by the user directly with a smartphone. However, applications that have genre characteristics like movies or include video-generation technology to show stories are still insufficient. It is predicted that the proposed automatic video editing has the potential to develop into a video editing application capable of transmitting emotions.

Genome editing of hybrid poplar (Populus alba × P. glandulosa) protoplasts using Cas9/gRNA ribonucleoprotein (현사시나무 원형질체에서 리보핵산단백질을 활용한 유전자 교정 방법 연구)

  • Park, Su Jin;Choi, Young-Im;Jang, Hyun A;Kim, Sang-Gyu;Choi, Hyunmo;Kang, Beum-Chang;Lee, Hyoshin;Bae, Eun-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.34-43
    • /
    • 2021
  • Targeted genome editing using the CRISPR/Cas9 system is a ground-breaking technology that is being widely used to produce plants with useful traits. However, for woody plants, only a few successful attempts have been reported. These successes have used Agrobacterium-mediated transformation, which has been reported to be very efficient at producing genetically modified trees. Nonetheless, there are unresolved problems with plasmid sequences that remain in the plant genome. In this study, we demonstrated a DNA-free genome editing technique in which purified CRISPR/Cas9 ribonucleoproteins (RNPs) are delivered directly to the protoplasts of a hybrid poplar (Populus alba × Populus glandulosa). We designed three single-guide RNAs (sgRNAs) to target the stress-associated protein 1 gene (PagSAP1) in the hybrid poplar. Deep sequencing results showed that pre-assembled RNPs had a more efficient target mutagenesis insertion and deletion (indel) frequency than did non-assembled RNPs. Moreover, the RNP of sgRNA3 had a significantly higher editing efficacy than those of sgRNA1 and sgRNA2. Our results suggest that the CRISPR/Cas9 ribonucleoprotein-mediated transfection approach is useful for the production of transgene-free genome-edited tree plants.

Determination of the Length of Target Recognition Sequence in sgRNA Required for CRISPR Interference (CRISPR 간섭에 필요한 sgRNA 표적 인식 서열 길이의 결정)

  • Kim, Bumjoon;Kim, Byeong Chan;Lee, Ho Joung;Lee, Sang Jun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.534-542
    • /
    • 2021
  • Single-molecular guide RNA (sgRNA) plays a role in recognizing the DNA target sequence in CRISPR technology for genome editing and gene expression control. In this study, we systematically compared the length of the target recognition sequence in sgRNAs required for genome editing using Cas9-NG (an engineered Cas9 recognizing 5'-NG as PAM sequence) and gene expression control using deactivated Cas9-NG (dCas9-NG) by targeting the gal promoter in E. coli. In the case of genome editing, the truncation of three nucleotides in the target recognition sequence (TRS) of sgRNA was allowed. In gene expression regulation, we observed that target recognition and binding were possible even if eleven nucleotides were deleted from twenty nucleotides of the TRS. When 4 or more nucleotides are truncated in the TRS of the sgRNA, it is thought that the sgRNA/Cas9-NG complex can specifically bind to the target DNA sequence, but lacks endonuclease activity to perform genome editing. Our study will be helpful in the development of artificial transcription factors and various CRISPR technologies in the field of synthetic biology.

A Study on How Governance of Genetic Scissors CRISPR-Cas9 for Research on Embryos Can Encourage a Researcher to Have a Sense of Responsibility - Focus on the Bioethics and Safety Act Article 47 - (유전자가위 CRISPR-Cas9을 이용한 인간 배아 연구에 있어서 연구자의 책임의식 고양을 위한 거버넌스 -개정 생명윤리 및 안전에 관한 법률 제47조를 중심으로-)

  • Kim, Minsung
    • The Korean Society of Law and Medicine
    • /
    • v.23 no.1
    • /
    • pp.121-148
    • /
    • 2022
  • CRISPR-Cas9 is one of the gene-editing technologies that infinite potential. It may provide human beings with many benefits or cause unanticipated challenges. The governance as standards setting or regulation of gene-editing technologies can contribute to keeping a balance between scientific value and ethical commitments. Guaranteeing public participation provides an additional opportunity to think about ethical and moral considerations: For whose benefit the internationally discussed governance of gene-editing technologies is directed at? There is a doubt regarding whether the governance justifies scientific researchers' gene-editing research. Suppose that governance promotes the advancement of CRISPR-Cas9, it should also encourage greater research responsibility. If not, there may be tragedies brought about by the misconduct of researchers. Thus, the essential matter on the governance for the research of CRISPR-Cas9 is the researchers' responsibility.