• Title/Summary/Keyword: edge region

Search Result 1,160, Processing Time 0.031 seconds

Image-based Water Level Measurement Method Adapting to Ruler's Surface Condition (목자판 표면 상태에 적응적인 영상 기반 수위 계측 기법)

  • Kim, Jae-Do;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.67-76
    • /
    • 2010
  • This paper proposes a image-based water level measurement method, which adapt to the ruler's surface condition. When the surface of a ruler is deteriorated by mud, drifts, or strong light reflection, the proposed method judges the pollution of ruler by comparing distance between two levels: the first one is the end position of horizontal edge region which keeps the pattern of ruler's marking, and the second one is the position where the sharpest drop occurs in the histogram which is construct using image density based on the axis of image height. If the ruler is polluted, the water level is a position of local valley of the section having a maximum difference between the local peak and valley around the second level. If the ruler is not polluted, the water level is detected as the position having horizontal edges more than 30% of histogram's maximum value around the first level. The detected water level is converted to the actual water level by using the mapping table which is construct based on the making of ruler in the image. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the real situation.

Investigation of Plant Injury under Ambient Air Pollutants (대기오염물질에 의한 농작물 피해원인 조사)

  • Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Jung, Goo-Bok;Kim, Won-Il;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In order to find out the cause of plant injury, the symptom of plant injury, and contents of element concerned in the plant were analysed. Also, a case study was conducted to find out the factor of plant injury at a agriculture and industry complex in Gyeongsang province in 2004. The distribution of isomeric curve was made with meteorological data, toxic gas concentration exhausted from pollution source. The general symptom of plant injury by ammonia gas was dry and dead of leaves with white color. At low concentration of ammonia gas, plant leaf showed spots of reddish brown. The characteristic of plant injury symptom by hydrogen fluoride gas was that the symptom was appeared at the edge of leaf. The isomeric curve of sulfur dioxide at the region, where the plant was damaged, showed that the area was affected by exhausted gas from the pollution source. Especially, this area was affected more deeply at summer than any other season.

The Structural, Electrical, and Optical Properties of ZnO Ultra-thin Films Dependent on Film Thickness (ZnO 초박막의 두께 변화에 따른 구조적, 전기적, 광학적 특성 변화 연구)

  • Kang, Kyung-Mun;Wang, Yue;Kim, Minjae;Lee, Hong-Sub;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • We investigated the structural, electrical and optical properties of zinc oxide (ZnO) ultra-thin films grown at $150^{\circ}C$ by atomic layer deposition (ALD). Diethylzinc and deionized water were used as metal precursors and reactants, respectively, for the deposition of ZnO thin films. The growth rate per ALD cycle was a constant 0.21 nm/cycle at $150^{\circ}C$, and samples below 50 cycles had amorphous properties due to the relatively thin thickness at the initial ALD growth stage. With the increase of the thickness from 100 cycles to 200 cycles, the crystallinity of ZnO thin films was increased and hexagonal wurtzite structure was observed. In addition, the particle size of the ZnO thin film increased with increasing number of ALD cycles. Electrical properties analysis showed that the resistivity value decreased with the increase of the thin film thickness, which is correlated with the decrease of the grain boundary concentration in the thicker ZnO thin film due to the increase of grain size and the improvement of the crystallinity. Optical characterization results showed that the band edge absorption in the near ultraviolet region (300 nm~400 nm) was increased and shifted. This phenomenon is due to the increase of the carrier concentration with the increase of the ZnO thin film thickness. This result agrees well with the decrease of the resistivity with the increase of the thin film thickness. Consequently, as the thickness of the thin film increases, the stress on the film surface is relaxed, the band gap decreases, and the crystallinity and conductivity are improved.

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

A Substorm Injection Event and the Radiation Belt Structure Observed by Space Radiation Detectors onboard Next Generation Small Satellite-1 (NEXTSat-1)

  • Yoo, Ji-Hyeon;Lee, Dae-Young;Kim, Eojin;Seo, Hoonkyu;Ryu, Kwangsun;Kim, Kyung-Chan;Min, Kyoungwook;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Kang, Kyung-In;Lee, Seunguk;Park, Jaeheung;Shin, Goo-Hwan;Park, SungOg
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.

Possibility of Gugak Fusion Bands as Shin-Hallyu Content (신한류 콘텐츠로서 국악퓨전밴드의 가능성 모색)

  • Lee, You-Jung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.323-331
    • /
    • 2020
  • In order to prolong the Shin-Hallyu and make a significant leap forward, we analyzed the characteristics of Jambinai, Singsing Band, and Ackdan Gwangchil, bands that are recognized globally for their musicality and popularity. First, the socio-cultural background behind the world's attention on korean traditional music lies in the racial and cultural diversity that embraces the non-mainstream identity. In particular, the success of Korean traditional music fusion bands in non-Asian countries can satisfy their public seeking to enjoy an exotic culture that is different from Western culture. it is necessary to recognize cultural, social and musical differences depending on the country or ethnicity and to approach them accordingly. Second, in the same Asian region, Korean traditional music is not given a sense of homogeneity, but in the West, the Eastern heterogeneity seems to have become a stronger ompetitive edge. With the expansion of the new Korean Wave to various regions, it is necessary to try to form a regional repertoire. Third, we found the validity of the convergence with the new Korean Wave through the characteristics of Gugak musicians as the main body to build a world of traditional music and enable popularization and globalization. It is necessary to highlight korea's traditional cultural value through analytical research on the effects of tone, composition and directing techniques reflected in korean traditional music or musical elements. The uniqueness and Korean values provided by Gugak will serve as homogeneity in Asia and heterogeneity in Europe and the United States, presenting the possibility of New Hallyu content and contributing to the prolonged Korean Wave.

The effect of preference color of children's hospital lobby on the visual attention (어린이병원 로비공간에서 선호 색채가 시지각 주의집중에 미친 영향)

  • Cho, Eun Kil;Son, Kwang Ho
    • Korea Science and Art Forum
    • /
    • v.23
    • /
    • pp.347-358
    • /
    • 2016
  • The design of children's hospitals is highly dependent on color schemes. As a space shared together by both adults and children, the design of children's hospitals require color coordination that takes account of the users' characteristics. However, because the majority of prior research on color perception has focused overly on the emotional aspects, there is a necessity for more rational and scientific analyses to identify the characteristics of the visual perception of colors. Adopting this perspective in analyzing the characteristics of the visual perception of colors, this study aims to move beyond the abstract to focus on more objective methods, such as eye-tracking experiments, to examine the characteristics of hospital visitors' visual attention with respect to colors. Visual perception tracking experiment was conducted on the 2 chosen experimental images with a target group made up of adults and children, the following results were found. Firstly, spaces created with the preference colors of the different groups were found to develop a characteristic of developing higher attention. Secondly, observing the common tendencies for attention for adults and children, the highest region for visual concentration was formed towards the middle, as attention progresses to lower stages visually focused area changes in the order of upper-middle, left and right, and lower regions and edge regions show characteristics of not triggering attention Thirdly, it is understood that children's level of attention drops a lot faster than adults when identifying space therefore it is suspected that children need more elaborate color coordination than adults.

A Study on the Storytelling and its Application : Focusing on the Panmunjom and the surrounding DMZ (판문점 및 주변 DMZ 지역의 스토리텔링과 활용방안에 관한 연구)

  • Lee, Dongmi
    • 지역과문화
    • /
    • v.6 no.4
    • /
    • pp.23-45
    • /
    • 2019
  • The main research is on how to find source stories and develop and utilize content that will properly show the value of Panmunjom and the surrounding DMZ on the Korean Peninsula, which are receiving worldwide attention. Three methods were used as research for the high-end branding of Panmunjom and the surrounding DMZ. The first is the interest of prospective visitors through the travel cycle, using Joseph Campbell's "The Hero's Journey." The second was to incorporate Roland Bart's "third meaning" into the subjective travel and emotional stimulation, which is the trend of modern travel. The third introduced Kevin Lynch's theory and tried to place five elements of the path, edge, district, node and landmark in the core location of Panmunjom. Through the study, the excavation of contents in Panmunjom and the surrounding DMZ needs to be collected to a third meaning using a direct interview method that listens to the stories of related figures as well as organizing historical events. The priority should be given to those over the age of 80 and interviews should be conducted at least three times and over three generations. The process of building it into an archive, selecting a story, and then going through a culture collage and networking and branding takes place in five stages. This can create a virtuous circle of content processing, content utilization, job creation in the region and revitalizing the local economy through discovery of source stories and storytelling. Content development should be able to touch sensibility while saving time, history, place, originality and sincerity. Taking the center between tourism and travel, development and damage concerns, a careful but long-term plan and large-scale discovery of source stories should be made, and a consensus should be formed on the need for proper storytelling.

Electrical Properties of Two-dimensional Electron Gas at the Interface of LaAlO3/SrTiO3 by a Solution-based Process (용액 공정을 통해 제조된 LaAlO3/SrTiO3 계면에서의 이차원 전자 가스의 전기적 특성)

  • Kyunghee Ryu;Sanghyeok Ryou;Hyeonji Cho;Hyunsoo Ahn;Jong Hoon Jung;Hyungwoo Lee;Jung-Woo Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2024
  • The discovery of a two-dimensional electron gas (2DEG) at the interface of LaAlO3 (LAO) and SrTiO3 (STO) substrates has sparked significant interest, providing a foundation for cutting-edge research in electronic devices based on complex oxide heterostructures. However, conventional methods for producing LAO thin films, typically employing techniques like pulsed laser deposition (PLD) within physical vapor deposition (PVD), are associated with high costs and challenges in precisely controlling the La and Al composition within LAO. In this study, we adopted a cost-effective alternative approach-solution-based processing-to fabricate LAO thin films and investigated their electrical properties. By adjusting the concentration of the precursor solution, we varied the thickness of LAO films from 2 to 65 nm and determined the sheet resistance and carrier density for each thickness. After vacuum annealing, the sheet resistance of the conductive channel ranged from 0.015 to 0.020 Ω·s-1, indicating that electron conduction occurs not only at the LAO/STO interface but also into the STO bulk region, consistent with previous studies. These findings demonstrate the successful formation and control of 2DEG through solution-based processing, offering the potential to reduce process costs and broaden the scope of applications in electronic device manufacturing.

Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields (Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • Purpose : To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated Materials and Method : The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of target-skin distance (TSD) and full collimator size (35*35 $cm^2$ on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cm * 105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. Results : The full width at half maximum(FWHM) of dose profile was 130 cm in large field of 105*105 $cm^2$ The width of $100\pm10\%$ of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose unifomity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80$\%$ depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. Conclusion : The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within$\pm10\%$ difference except the protruding area of skin which needs a shield and deeply curvatured region of skin which needs boosting dose.

  • PDF