• Title/Summary/Keyword: edge of the road

Search Result 206, Processing Time 0.03 seconds

Evaluation of Adhesion Characteristics of Crack Sealants Used in Asphalt Concrete Pavement (아스팔트 콘크리트 포장용 균열실링재의 부착특성 평가)

  • Lee, Jae-Jun;Kim, Seung-Hoon;Baek, Jong-Eun;Lim, Jae-Kyu;Kim, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performance-based standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating and differentiating between different crack sealants. Based on alimited number of test results, this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.

Development of Three-Dimensional Finite Element Model for Structural Analysis of Airport Concrete Pavements (공항 콘크리트 포장 구조해석을 위한 3차원 유한요소 모형 개발)

  • Park, Hae Won;Shim, Cha Sang;Lim, Jin Seon;Joe, Nam Hyun;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading. METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model. RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis. CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.

A Study on Intelligent Mobility Enhancement System for the Mobility Handicapped (첨단 교통약자 보호시스템에 대한 연구)

  • Han, Woong-Gu;Shin, Kang-Won;Choi, Kee-Choo;Kim, Nam-Sun;Sohn, Sang-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.25-37
    • /
    • 2010
  • This study is aimed at enhancing mobility rights for the transportation underprivileged that has been made light of relatively compared to normal people. In order to do this, we've suggested having ITS (Intelligent Traffic System) built and improving satisfaction through the test operation of its main system. The existing sound signal device for the visually handicapped has one problem with managing it. Because, the people in charge of it had to visit each problematic site directly to maintain and fix some problems every time it was out of order. Moreover, it couldn't provide sustainable services about voice guidance and the visually handicapped had to control it by either confirming the location of buttons that were installed on the pillar of traffic light and then pressing one of them or using a remote controller on their own. In order to improve such inconveniences, we have created a new typed sound signal device for the visually handicapped by applying the cutting-edge wireless technology based on ergonomics considering actual road situations. Such technology enables it report the status of signal device and light to them by using its voice guidance system automatically every time they have access to it. Additionally, we've already introduced it to a couple of test areas and then known the fact that they recognized traffic situation more conveniently and safely compared to the existing sound signal device. That is above average in terms of satisfaction. In addition to that, we've provided LTS (Location Tracking System - Location-based service intended for elementary students) by utilizing the existing wireless infrastructure and founded the fact that about 87% of their parents were satisfied with the service based on LTS.

Effect of Tire Contact Stresses on Tensile Strains in the Surface of Thin Asphalt Pavement (접지압력이 앎은 아스팔트포장 표층 인장 변형률에 미치는 영향 분석)

  • Park, Dae-Wook;Park, Joon-Kyu
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-55
    • /
    • 2008
  • In this paper, comparisons are presented on the predicted tensile strains which can affect the fatigue life of a thin asphalt concrete (AC) pavement near the surface of pavement from three-dimensional (3D) finite element (FE) using 3D measured tire contact stresses of a radial tire and a bias ply tire and a layered linear elastic program (BISAR). The objective was to analyze the stress distributions for a 11R22.5 radial tire and a $10{\times}20$ bias ply tire, and to compare the predicted tensile strains at the top and bottom of AC surface using different analysis methods. The results show that the stress distributions of two tires are similar but the 11R22.5 radial tire has much higher vertical contact stress than that of the $10{\times}20$ bias ply tire. The predicted tensile strains at the bottom of AC layer under the center of tire showed higher value by BM (BISAR with the measured contact area) method, which the measured tire contact area is used in a layered elastic program, while the tensile strain at the top of AC surface of 3.5cm offset distance from tire edge by 3D FE analysis showed the highest values among three analysis methods.

  • PDF

Numerical Analysis off-Shape Cracking in Jointed Concrete Pavements (줄눈콘크리트 포장의 T형 균열 발생 원인 수치 해석)

  • Yun, Dong-Ju;Seo, Young-Guk;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • This study was conducted to investigate the causes that induce the T-shape cracks at the joints in the jointed concrete pavements(JCPs). The finite element models of JCP including dowel bars were developed and the stress distribution in the slab was investigated under environmental loads. To investigate the effect of dowel bars on the transverse stresses at the joints that induce the T-shape cracks, the slab curling behavior was analyzed with and without dowel bars. In addition, the stress concentration was investigated when the dowel bar was not installed at the mid-depth of the slab. The results of this study showed that the transverse stresses were not affected by the dowel bars if the dowel bars were installed at the mid-depth of the slab. However, if the dowel bars were not installed at the mid-depth, the transverse stresses were concentrated at the dowel bar locations when the slab curled. The stress concentration was dependent on the contact characteristics between the dowel bar and concrete, and was significantly large when the dowel bar not installed at the mid-depth was located far from the edge of the slab. Therefore, to mitigate T-shape cracking in JCP, dowel bars should be very carefully installed and leveled at the proper locations.

  • PDF

Introduction to Useful Attributes for the Interpretation of GPR Data and an Analysis on Past Cases (GPR 자료 해석에 유용한 속성들 소개 및 적용 사례 분석)

  • Yu, Huieun;Joung, In Seok;Lim, Bosung;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.113-130
    • /
    • 2021
  • Recently, ground-penetrating radar (GPR) surveys have been actively employed to obtain a large amount of data on occurrences such as ground subsidence and road safety. However, considering the cost and time efficiency, more intuitive and accurate interpretation methods are required, as interpreting a whole survey data set is a cost-intensive process. For this purpose, GPR data can be subjected to attribute analysis, which allows quantitative interpretation. Among the seismic attributes that have been widely used in the field of exploration, complex trace analysis and similarity are the most suitable methods for analyzing GPR data. Further, recently proposed attributes such as edge detecting and texture attributes are also effective for GPR data analysis because of the advances in image processing. In this paper, as a reference for research on the attribute analysis of GPR data, we introduce the useful attributes for GPR data and describe their concepts. Further, we present an analysis of the interpretation methods based on the attribute analysis and past cases.

Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier (투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템)

  • Lee Eung-Joo;Lee Su Hyun;Kim Sung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1496-1509
    • /
    • 2005
  • In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed $98.8\%$ and $96.5\%$ successive rate respectively. And also, from the segmented letters, it shows $97.3\%$ and $96\%$ successive recognition rate respectively.

  • PDF

Interpretation and Preservation Plan for Landscapes of Okyeonsipyeong at Buyongdae, Hahoe Village - Based on the Writings of "Okyeonseodanggi" and "Okyeonsipyeong" - (하회마을 부용대의 경관 해석 및 보전방안 - "옥연서당기(玉淵書堂記)"와 "옥연십영(玉淵十詠)"을 중심으로-)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Shin, Sang-Sup
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.59-70
    • /
    • 2013
  • This study was to suggest cultural landscape preservation, value creation, as well as utilization plan to help landscape development of Hahoe village by identify the existence of Okyeonsipyeong(玉淵十詠) natural features, which were set around Buyongdae(芙蓉臺) in Hahoe Village by Seoae(西崖) Ryu, Seongryong(柳成龍), and understanding their characteristics and meanings of natural features and meanings. Based on the writings of "Okyeonseodanggi" and "Okyeonsipyeong", the major results of this study are as belows. 'Okyeon(玉淵)' letters carved on the rocks, also known as the name of pavilion in Okyeonjeongsa(玉淵精舍), is the center of Okyeonsipyeong that symbolizes the enlightenment of clean noble man, as well as the symbolic locational expression of studying room. One of Okyeonsipyeong, 'Wansimjae', is assumed to be the name from the combination of two Buddhist names, 'Wanjeok(玩寂)' and 'Seshim(洗心)', 'Dangho(堂號)', lined on both sides with Wonlakjae, the residence of Seoae, as the center. Wansimjae is after all the natural feature indicating the overall Okyeonjeongsa as the core of Okyeonsipyeong with west edge Gyeomamjeongsa(謙巖精舍). Among ten Okyeonsipyeong natural features, Wansimjae(玩心齋), Ganjukmun(看竹門), Gyeomamsa(謙菴舍), Dalgwandae(達觀臺), Ssangsongae(雙松厓), and Dohwacheon (桃花遷) are on the right side of the stairway from Okyeonjeongsa to Gyeomamjeongsa, while Chuwoldam(秋月潭), Neungpadae(凌波臺), Gyeseonam(繫船巖), and Jijuam(砥柱巖) are on the road to the cliff under river cliff in Buyongdae as well as to the dock, and all are located within 500m radius close and diameter area. As the results of lexeme and context analyses of Okyeonsipyeong poet, they are mainly about Confucian teachings symbolizing the constancy of the classical scholar including ego becoming one with the nature and back to the nature, unworldliness and farsighted view, transcendence and seclusion, as well as integrity spirit. In Dohwacheon and Gyeomamsa poets, there is Tao characteristics and brotherhood that pursue fairylands such as Mooreungdowon(武陵桃源). To create tourism brand and landscape of Okyeonsipyeong, it is necessary to prepare storytelling plans including the letters carved on the rocks introduction in Buyongdae area, and also synopsis of the Silgyeongsusang musical, 'Buyongjiae(芙蓉之愛)' that is related to 10 natural features. In addition, the related plans of the experience road from Gyeseonam, which is the boat stop in Buyongdae, to Ganjukmun of Okyeonjeongsa, and again to viewing routes on the stairways to Gyeomamjeongsa using boats are necessary. For preliminary preservation and maintenance plans, the safety of the stairway from Okyeonjeongsa to Gyeomamjeongsa should be secured, the rock inscription should be preserved, landscape interpretation plates should be installed, trees and shrubs around Dohwacheon rock inscription should be removed, Dalgwandae letters carved on the rocks should be restored, and the bamboo forest outside Ganjukmun as well as Prunus persica plantation around Dohwacheon should be pointed out.

Prediction on Habitat Distribution in Mt. Inwang and Mt. An Using Maxent (Maxent 모형을 활용한 인왕산-안산 서식지 분포 예측)

  • Seo, Saebyul;Lee, Minjee;Kim, Jaejoo;Chun, Seung-Hoon;Lee, Sangdon
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.432-441
    • /
    • 2016
  • In this study, we predicted species distributions in Mt. Inwang and Mt. An as preceding research to build ecological corridor by considering connectivity of habitats which have been fragmented in the city. We analyzed species distributions by using Maxent (Maximum Entropy Approach) model with species presence. We used 23 points of mammals and 15 points of Titmouse (Parus major, P. palustris, P. varius) as target species from appearance points of species examined. We build 4 geography factors, 4 vegetation factors, and 2 distance factors as model variables In case of mammals, factors that affected species distribution model was Digital Elevation Model(DEM, 34%) followed by Distance from edge forest to interior (24.8%) and Species of tree (10%). On the other hand, in case of Parus species, factors that affected species distribution model were DEM (39.6%) followed by distance from road (35.4%) and Density-class (8.2%). Therefore, birds and mammals prefer interior of mountain, and this area needs to be protected.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.