• Title/Summary/Keyword: edge map

Search Result 377, Processing Time 0.03 seconds

The Study on the Cutting Force Prediction in the Ball-End Milling Process at the Random Cutting Area using Z-map (Z-map을 이용한 임의의 절삭영역에서의 볼 엔드밀의 절삭력 예측에 관한 연구)

  • 김규만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.125-129
    • /
    • 1996
  • In this study, a method is proposed for the cutting force prediction of Ball-end milling process using Z-map is proposed. Any types of cutting area generated from previous cutting process can be expressed in z-map data. Cutting edge of a ball-end mill is divided into a set of finite cutting edges and the position of this edge is projected to the cross-section plane normal to the Z-axis. Comparing this projected position with Z-map data of cutting area and determining whether it is in the cutting region, total cutting force can be calculated by means of numerical integration. A series of experiments such as side cutting and upward/downard cutting was performet to verify the simulated cutting force.

  • PDF

Development of an Edge-Based Algorithm for Moving-Object Detection Using Background Modeling

  • Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2014
  • Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.

A Single Field Deinterlacing Algorithm Using Edge Map in the Image Block (영상 블록에서의 에지 맵을 이용한 단일 필드 디인터레이싱 알고리듬)

  • Kang, Kun-Hwa;Jeon, Gwang-Gil;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.355-362
    • /
    • 2009
  • A new intra field deinterlacing algorithm with edge map in the image block is introduced. Conventional deinterlacing methods usually employ edge-based line average algorithm within pixel-by-pixel approach. However, it is sensitive to variation of intensity. To reduce this shortcoming, we proposed edge direction vector computed by edge map, and also its interpolation technique. We first introduce an edge direction vector, which is computed by Sobel mask, so that finer resolution of the edge direction can be acquired. The proposed edge direction vector oriented deinterlacer operates by identifying small pixel variations in five orientations, while weighted averaging to estimate missing pixel. According to the edge direction of the direction vector, we calculate weights on each edge direction. These weight values multiplied by the candidate deinterlaced pixels in order to successively build approximations of the deinterlaced sequence.

A Study of the Use of step by preprocessing and Graph Cut for the exact depth map (깊이맵 향상을 위한 전처리 과정과 그래프 컷에 관한 연구)

  • Kim, Young-Seop;Song, Eung-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2011
  • The stereoscopic vision system is the algorithm to obtain the depth of target object of stereo vision image. This paper presents an efficient disparity matching method using blue edge filter and graph cut algorithm. We do recommend the use of the simple sobel edge operator. The application of B band sobel edge operator over image demonstrates result with somewhat noisy (distinct border). The basic technique is to construct a specialized graph for the energy function to be minimized such that the minimum cut on the graph also minimizes the energy (either globally or locally). This method has the advantage of saving a lot of data. We propose a preprocessing effective stereo matching method based on sobel algorithm which uses blue edge information and the graph cut, we could obtain effective depth map.

Depth Map Generation Algorithm from Single Defocused Image (흐린 초점의 단일영상에서 깊이맵 생성 알고리즘)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.67-71
    • /
    • 2016
  • This paper addresses a problem of defocus map recovery from single image. We describe a simple effective approach to estimate the spatial value of defocus blur at the edge location of the image. At first, we perform a re-blurring process using Gaussian function with input image, and calculate a gradient magnitude ratio with blurring amount between input image and re-blurred image. Then we get a full defocus map by propagating the blur amount at the edge location. Experimental result reveals that our method outperforms a reliable estimation of depth map, and shows that our algorithm is robust to noise, inaccurate edge location and interferences of neighboring edges within input image.

Screen-shot Image Demorieing Using Multiple Domain Learning (다중 도메인 학습을 이용한 화면 촬영 영상 내 모아레 무늬 제거 기법)

  • Park, Hyunkook;Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.3-13
    • /
    • 2021
  • We propose a moire artifacts removal algorithm for screen-shot images using multiple domain learning. First, we estimate clean preliminary images by exploiting complementary information of the moire artifacts in pixel value and frequency domains. Next, we estimate a clean edge map of the input moire image by developing a clean edge predictor. Then, we refine the pixel and frequency domain outputs to further improve the quality of the results using the estimated edge map as the guide information. Finally, the proposed algorithm obtains the final result by merging the two refined results. Experimental results on a public dataset demonstrate that the proposed algorithm outperforms conventional algorithms in quantitative and qualitative comparison.

Edge Detection Using the Co-occurrence Matrix (co-occurrence 행렬을 이용한 에지 검출)

  • 박덕준;남권문;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.111-119
    • /
    • 1992
  • In this paper, we propose an edge detection scheme for noisy images based on the co-occurrence matrix. In the proposed scheme based on the step edge model, the gray level information is simply converted into a bit-map, i.e., the uniform and boundary regions of an image are transformed into a binary pattern by using the local mean. In this binary bit-map pattern, 0 and 1 densely distributed near the boundary region while they are randomly distributed in the uniform region. To detect the boundary region, the co-occurrence matrix on the bit-map is introduced. The effectiveness of the proposed scheme is shown via a quantitative performance comparison to the conventional edge detection methods and the simulation results for noisy images are also presented.

  • PDF

Reduction in Sample Size for Efficient Monte Carlo Localization (효율적인 몬테카를로 위치추정을 위한 샘플 수의 감소)

  • Yang Ju-Ho;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.450-456
    • /
    • 2006
  • Monte Carlo localization is known to be one of the most reliable methods for pose estimation of a mobile robot. Although MCL is capable of estimating the robot pose even for a completely unknown initial pose in the known environment, it takes considerable time to give an initial pose estimate because the number of random samples is usually very large especially for a large-scale environment. For practical implementation of MCL, therefore, a reduction in sample size is desirable. This paper presents a novel approach to reducing the number of samples used in the particle filter for efficient implementation of MCL. To this end, the topological information generated through the thinning technique, which is commonly used in image processing, is employed. The global topological map is first created from the given grid map for the environment. The robot then scans the local environment using a laser rangefinder and generates a local topological map. The robot then navigates only on this local topological edge, which is likely to be similar to the one obtained off-line from the given grid map. Random samples are drawn near the topological edge instead of being taken with uniform distribution all over the environment, since the robot traverses along the edge. Experimental results using the proposed method show that the number of samples can be reduced considerably, and the time required for robot pose estimation can also be substantially decreased without adverse effects on the performance of MCL.

Saliency Map Creation Method Robust to the Contour of Objects (객체의 윤곽선에 강인한 Saliency Map 생성 기법)

  • Han, Sung-Ho;Hong, Yeong-Pyo;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.3
    • /
    • pp.173-178
    • /
    • 2012
  • In this paper, a new saliency map generation method is discussed which extracts objects effectively using extracted Salient Region. Feature map is constructed first using four features of edge, hue of HSV color model, focus and entropy and then conspicuity map is generated from Center Surround Differences using the feature map. Final saliency map is constructed by the combination of conspicuity maps. Saliency map generated using this procedure is compared to the conventional technique and confirmed that new technique has better results.

Image Enhancement Method using Canny Algorithm based on Curvelet Transform

  • Mun, Byeong-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.51-56
    • /
    • 2018
  • This paper proposes the efficient preprocessing method based on curvelet transform for edge enhancement in image. The propose method is generated the edge map by using the Canny algorithm to wavelet transform, which is the sub-step of the curvelet transform. In order to improve the part of edge feature, the selective sharpening according to the generate edge map is applied. In experimental result, the propose method achieves that the enhancement of edge feature is better than conventional methods. This leads that peak to signal noise ratio, edge intensity are improvement on average about 1.92, 1.12dB respectively.