• 제목/요약/키워드: edge finite elements

검색결과 73건 처리시간 0.024초

유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석 (Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete)

  • 백종은;유평준
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

소형 복합재 태양광 무인기 윙 리딩에지스킨 모델 비교 연구 (A Comparison Study of Wing Leading Edge Skin Models in Small Composite Solar-Powered UAVs)

  • 양용만;김용하;김종환;김영인;이수용
    • 한국전산구조공학회논문집
    • /
    • 제30권5호
    • /
    • pp.445-452
    • /
    • 2017
  • 본 연구에서의 날개 앞전은 날개의 공기역학적인 기능뿐만 아니라 조류 등의 외부의 손상을 줄 수 있는 것으로부터 날개 내부 구성요소를 보호하고 안전한 항공기 운항을 위한 반드시 필요한 구조 요소이다. 복합재 무인기의 날개 경량화를 위한 최적의 제작 모델을 비교 검토하였다. MSC. Patran/Nastran을 이용한 유한요소해석을 통하여 비틀림 하중의 변위 형상을 비교 확인하였으며, 각 모델들의 비틀림 강도 실험을 통하여 적층 유형, 두께 변화 및 형상 적용에 따른 경량화 성능 개선을 확인하므로써 소형 복합재 무인기 최적의 경량화 날개 앞전스킨의 형태를 제시하였다.

복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석 (Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover)

  • 임인규;최지훈;이인;한재흥
    • Composites Research
    • /
    • 제17권3호
    • /
    • pp.29-37
    • /
    • 2004
  • 본 연구에서는 대변형 보이론을 이용하여 정지 비행 시 복합재 무베어링 로우터 시스템의 공력탄성학적 안정성 해석을 수행하였다. 무베어링 로우터 시스템은 유연보, 토오크 튜브, 피치 링크, 그리고 메인 블레이드로 구성된다. 유연보, 토오크 튜브, 그리고 메인 블레이드를 각각 플랩 굽힘, 리드-래그 굽힘, 비틀림 그리고 축 방향 변형의 탄성 운동을 하는 보로 가정하고, 1차원 보 요소로 모델링을 하였다. 또한, 유연보를 복합재료 적층판으로 구성된 비틀림에 유연한 직사각형 단면을 갖는 보로 모델링 하여, 1차원 보 해석에 필요한 유효 단면 상수를 얻었다. 외력으로는 2차원 준-정상 공기력 모델을 적용하였으며, 보의 유한 요소 지배방정식은 헤밀턴 원리(Hamilton's principle)를 이용하여 얻었다. 공력 탄성학적 안정성 해석을 수행하기 위하여 p-k 방법을 이용하였으며, 유연보의 적층각과 적층 순서에 따른 구조적 연성이 무베어링 로우터 시스템의 공란성 안정성에 미치는 영향을 알아보았다.

Limit load equations for partially restrained RC slabs

  • Olufemi, O.O.;Cheung, K.L.;Hossain, K.M.A.
    • Structural Engineering and Mechanics
    • /
    • 제19권1호
    • /
    • pp.1-20
    • /
    • 2005
  • The expertise required in the judicious use of nonlinear finite element (FE) packages for design-assistance purposes is not widely available to the average engineer, whose sole aim may be to obtain an estimate for a single design parameter, such as the limit load capacity of a structure. Such a parameter may be required for the design of a proposed reinforced concrete (RC) floor slab or bridge deck with a given set of geometrical and material details. This paper outlines a procedure for developing design-assistance equations for carrying out such predictions for partially restrained RC slabs under uniformly distributed loading condition, based on a database of FE results previously generated from a large number of 'numerical model' slabs. The developed equations have been used for predicting the peak loads of a number of experimental RC slabs having varying degrees of edge restraints; with results showing a reasonable degree of accuracy and low level of scatter. The simplicity of the equations makes them attractive and their successful use in the field of application reported in this paper suggest that the outlined procedure may also be extended to other classes of concrete structures.

Inductor Loaded 패치안테나를 이용한 2 소자 배열 안테나의 상호결합 특성 (Mutual Coupling Characteristics of a 2-element Array Antenna using Inductor Loaded Patch Antennas)

  • 김군수;김태영;윤영민;김부균
    • 대한전자공학회논문지TC
    • /
    • 제48권4호
    • /
    • pp.92-99
    • /
    • 2011
  • Inductor loaded 패치안테나를 이용한 2 소자 배열 안테나의 기판 크기에 따른 상호결합 특성에 대하여 연구하였다. Inductor loaded 패치안테나를 각각 E-평면과 H-평면상에 배열하여 상호결합 특성을 비교하였다. Inductor loaded 패치안테나를 이용한 배열 안테나는 배열 방향에 상관없이 두 안테나 소자 간의 상호결합 크기가 매우 작았고 상호결합이 작게 발생하는 패치안테나의 중심과 E-평면방향의 기판 가장자리까지의 거리가 유사한 값을 가짐을 알 수 있었다.

차량용 에어컨 컴프레서 브라켓의 형상최적화 (Shape Optimization of an Air-conditioner Compressor Mounting Bracket)

  • 제형호;김찬묵;강영규;이두호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.389-394
    • /
    • 2003
  • In this paper, a shape optimization technique is applied to design of an air-conditioner mounting bracket. The mounting bracket is a structural component of an engine, on which bolts attach an air-conditioner compressor. The air-conditioner mounting bracket has a large portion of weight among the engine components. To reduce weight of the bracket, the shape is optimized using a finite element software. The compressor assembly, composed of a compressor and a bracket is modeled using finite elements. An objective function for the shape optimization of the bracket is the weight of the bracket. Two design constraints on the bracket are the first resonant frequency of the compressor assembly and the fatigue life of the bracket. The design variables are the shape of the bracket including thickness profiles of the front and back surfaces of the bracket, radius of outer bolt-holes, and side edge profiles. The coordinates of the FE nodes control the shape parameters. Optimal shapes of the bracket are obtained by using SOL200 of MSC/NASTRAN.

  • PDF

Implementation and assessment of advanced failure criteria for composite layered structures in FEMAP

  • Grasso, Amedeo;Nali, Pietro;Cinefra, Maria
    • Advances in aircraft and spacecraft science
    • /
    • 제6권1호
    • /
    • pp.51-67
    • /
    • 2019
  • AMOSC (Automatic Margin Of Safety Calculation) is a SW tool which has been developed to calculate the failure index of layered composite structures by referring to the cutting edge state-of-the-art LaRC05 criterion. The stress field is calculated by a finite element code. AMOSC allows the user to calculate the failure index also by referring to the classical Hoffman criterion (which is commonly applied in the aerospace industry). When developing the code, particular care was devoted to the computational efficiency of the code and to the automatic reporting capability. The tool implemented is an API which has been embedded into Femap Siemens SW custom tools. Then, a user friendly graphical interface has been associated to the API. A number of study-cases have been solved to validate the code and they are illustrated through this work. Moreover, for the same structure, the differences in results produced by passing from Hoffman to LaRC05 criterion have been identified and discussed. A number of additional comparisons have thus been produced between the results obtained by applying the above two criteria. Possible future developments could explore the sensitivity of the failure indexes to a more accurate stress field inputs (e.g. by employing finite elements formulated on the basis of higher order/hierarchical kinematic theories).

MIT 요동 익형의 수치해석 : 비정상 유동 특성 (Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics)

  • 배상수;강동진;김재원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

Unstructured Tetrahedral Meshing by an Edge-Based Advancing Front Method

  • Kim, Young-Woong;Kwon, Gi-Whan;Chae, Soo-Won;Shim, Jae-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.211-218
    • /
    • 2002
  • This paper proposes an unstructured tetrahedral meshing algorithm for CAD models in the IGES format. The work presented is based on the advancing front method, which was proposed by the third author. Originally, the advancing front method uses three basic operators, namely, trimming, wedging, and digging. In this research, in addition to the basic operators, three new operators splitting, local finishing, and octahedral-are added to stabilize the meshing process. In addition, improved check processes are applied to obtain better-shaped elements. The algorithm is demonstrated and evaluated by four examples.