• Title/Summary/Keyword: edge computing

Search Result 494, Processing Time 0.027 seconds

Data Access Control Scheme Based on Blockchain and Outsourced Verifiable Attribute-Based Encryption in Edge Computing

  • Chao Ma;Xiaojun Jin;Song Luo;Yifei Wei;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1935-1950
    • /
    • 2023
  • The arrival of the Internet of Things and 5G technology enables users to rely on edge computing platforms to process massive data. Data sharing based on edge computing refines the efficiency of data collection and analysis, saves the communication cost of data transmission back and forth, but also causes the privacy leakage of a lot of user data. Based on attribute-based encryption and blockchain technology, we design a fine-grained access control scheme for data in edge computing, which has the characteristics of verifiability, support for outsourcing decryption and user attribute revocation. User attributes are authorized by multi-attribute authorization, and the calculation of outsourcing decryption in attribute encryption is completed by edge server, which reduces the computing cost of end users. Meanwhile, We implemented the user's attribute revocation process through the dual encryption process of attribute authority and blockchain. Compared with other schemes, our scheme can manage users' attributes more flexibly. Blockchain technology also ensures the verifiability in the process of outsourcing decryption, which reduces the space occupied by ciphertext compared with other schemes. Meanwhile, the user attribute revocation scheme realizes the dynamic management of user attribute and protects the privacy of user attribute.

Trend of Edge Machine Learning as-a-Service (서비스형 엣지 머신러닝 기술 동향)

  • Na, J.C.;Jeon, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.44-53
    • /
    • 2022
  • The Internet of Things (IoT) is growing exponentially, with the number of IoT devices multiplying annually. Accordingly, the paradigm is changing from cloud computing to edge computing and even tiny edge computing because of the low latency and cost reduction. Machine learning is also shifting its role from the cloud to edge or tiny edge according to the paradigm shift. However, the fragmented and resource-constrained features of IoT devices have limited the development of artificial intelligence applications. Edge MLaaS (Machine Learning as-a-Service) has been studied to easily and quickly adopt machine learning to products and overcome the device limitations. This paper briefly summarizes what Edge MLaaS is and what element of research it requires.

Tracking Data through Tracking Data Server in Edge Computing (엣지 컴퓨팅 환경에서 추적 데이터 서버를 통한 데이터 추적)

  • Lim, Han-wool;Byoun, Won-jun;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.443-452
    • /
    • 2021
  • One of the key technologies in edge computing is that it always provides services close to the user by moving data between edge servers according to the user's movements. As such, the movement of data between edge servers is frequent. As IoT technology advances and usage areas expand, the data generated also increases, requiring technology to accurately track and process each data to properly manage the data present in the edge computing environment. Currently, cloud systems do not have data disposal technology based on tracking technology for data movement and distribution in their environment, so users cannot see where it is now, whether it is properly removed or not left in the cloud system if users request it to be deleted. In this paper, we propose a tracking data server to create and manage the movement and distribution of data for each edge server and data stored in the central cloud in an edge computing environment.

Task Scheduling on Cloudlet in Mobile Cloud Computing with Load Balancing

  • Poonam;Suman Sangwan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.73-80
    • /
    • 2023
  • The recent growth in the use of mobile devices has contributed to increased computing and storage requirements. Cloud computing has been used over the past decade to cater to computational and storage needs over the internet. However, the use of various mobile applications like Augmented Reality (AR), M2M Communications, V2X Communications, and the Internet of Things (IoT) led to the emergence of mobile cloud computing (MCC). All data from mobile devices is offloaded and computed on the cloud, removing all limitations incorporated with mobile devices. However, delays induced by the location of data centers led to the birth of edge computing technologies. In this paper, we discuss one of the edge computing technologies, i.e., cloudlet. Cloudlet brings the cloud close to the end-user leading to reduced delay and response time. An algorithm is proposed for scheduling tasks on cloudlet by considering VM's load. Simulation results indicate that the proposed algorithm provides 12% and 29% improvement over EMACS and QRR while balancing the load.

Expert System-based Context Awareness for Edge Computing in IoT Environment (IoT 환경에서 Edge Computing을 위한 전문가 시스템 기반 상황 인식)

  • Song, Junseok;Lee, Byungjun;Kim, Kyung Tae;Youn, Hee Yong
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.21-30
    • /
    • 2017
  • IoT(Internet of Things) can enable networking and computing using any devices is rapidly proliferated. In the existing IoT environment, bottlenecks and service delays can occur because it processes data and provides services to users using central processing based on Cloud. For this reason, Edge Computing processes data directly in IoT nodes and networks to provide the services to the users has attracted attention. Also, numerous researchers have been attracted to intelligent service efficiently based on Edge Computing. In this paper, expert system-based context awareness scheme for Edge Computing in IoT environment is proposed. The proposed scheme can provide customized services to the users using context awareness and process data in real-time using the expert system based on efficient cooperations of resource limited IoT nodes. The context awareness services can be modified by the users according to the usage purpose. The three service modes in the security system based on smart home are used to test the proposed scheme and the stability of the proposed scheme is proven by a comparison of the resource consumptions of the servers between the proposed scheme and the PC-based expert system.

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.

A Study on Integrity Protection of Edge Computing Application Based on Container Technology (컨테이너 기술을 활용한 엣지 컴퓨팅 환경 어플리케이션 무결성 보호에 대한 연구)

  • Lee, Changhoon;Shin, Youngjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1205-1214
    • /
    • 2021
  • Edge Computing is used as a solution to the cost problem and transmission delay problem caused by network bandwidth consumption that occurs when IoT/CPS devices are integrated into the cloud by performing artificial intelligence (AI) in an environment close to the data source. Since edge computing runs on devices that provide high-performance computation and network connectivity located in the real world, it is necessary to consider application integrity so that it is not exploited by cyber terrorism that can cause human and material damage. In this paper, we propose a technique to protect the integrity of edge computing applications implemented in a script language that is vulnerable to tampering, such as Python, which is used for implementing artificial intelligence, as container images and then digitally signed. The proposed method is based on the integrity protection technology (Docker Contents Trust) provided by the open source container technology. The Docker Client was modified and used to utilize the whitelist for container signature information so that only containers allowed on edge computing devices can be operated.

Data Central Network Technology Trend Analysis using SDN/NFV/Edge-Computing (SDN, NFV, Edge-Computing을 이용한 데이터 중심 네트워크 기술 동향 분석)

  • Kim, Ki-Hyeon;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • Recently, researching using big data and AI has emerged as a major issue in the ICT field. But, the size of big data for research is growing exponentially. In addition, users of data transmission of existing network method suggest that the problem the time taken to send and receive big data is slower than the time to copy and send the hard disk. Accordingly, researchers require dynamic and flexible network technology that can transmit data at high speed and accommodate various network structures. SDN/NFV technologies can be programming a network to provide a network suitable for the needs of users. It can easily solve the network's flexibility and security problems. Also, the problem with performing AI is that centralized data processing cannot guarantee real-time, and network delay occur when traffic increases. In order to solve this problem, the edge-computing technology, should be used which has moved away from the centralized method. In this paper, we investigate the concept and research trend of SDN, NFV, and edge-computing technologies, and analyze the trends of data central network technologies used by combining these three technologies.

Mobile Edge Computing based Building Disaster Alert System Implementation (Mobile Edge Computing을 활용한 건물 재난 알림 시스템 구축 방안)

  • Ha, Taeyoung;Kim, Jungsung;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • In this paper, a building disaster notification system with MEC (Mobile Edge Computing) technology is proposed, which informs people in a building about the disaster. The overview of MEC is presented, and the structure and characteristics of network using MEC are described. In addition, the characteristics of a enterprise integration pattern based Apache Camel is described, and how to implement MEC with Apache Camel is presented. Finally, an implementation method of building disaster notification system with Apache Camel based MEC is proposed to quickly recognize disasters through sensors and to rapidly evacuate people from buildings.

Design of Personalized Exercise Data Collection System based on Edge Computing

  • Jung, Hyon-Chel;Choi, Duk-Kyu;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.61-68
    • /
    • 2021
  • In this paper, we propose an edge computing-based exercise data collection device that can be provided for exercise rehabilitation services. In the existing cloud computing method, when the number of users increases, the throughput of the data center increases, causing a lot of delay. In this paper, we design and implement a device that measures and estimates the position of keypoints of body joints for movement information collected by a 3D camera from the user's side using edge computing and transmits them to the server. This can build a seamless information collection environment without load on the cloud system. The results of this study can be utilized in a personalized rehabilitation exercise coaching system through IoT and edge computing technologies for various users who want exercise rehabilitation.