• 제목/요약/키워드: eddies

검색결과 198건 처리시간 0.026초

태풍통과시 3차원 원시모델을 이용한 녹산만 담수역의 시공간 변화특성 (Temporal and Spatial Variation in the Freshwater Region in Noksan Bay with the Passage of Typhoons Using the POM)

  • 홍철훈;박세영
    • 한국수산과학회지
    • /
    • 제46권1호
    • /
    • pp.59-69
    • /
    • 2013
  • Temporal and spatial variation in the freshwater region, created by river runoff, of a small bay, caused by the passage of typhoons was examined using a three-dimensional primitive equation model (the Princeton Ocean Model, POM). Numerical experiments were implemented focusing on temporal evolution in the freshwater region in association with typhoon tracks. The model domain covered most of the estuary around the Nakdong River, including Noksan Bay, where river water is periodically released from upstream (Noksan dam). The model showed that the extension of the freshwater region outside of the bay depended strongly on the tracks of typhoons, specifically the associated wind directions and inner flow fields that are accompanied by new clockwise eddies. The model also showed that entrainment from typhoon passage frequently creates salt wedges in the estuary, indicating that organisms in the bay are biologically and chemically influenced with variation in the freshwater region.

SEASONAL DISTRIBUTION OF CHLOROPHYLL-A CONCENTRATION DEDUCED FROM MODIS OCEAN COLOR DATA IN THE EDDY AREA HYUGA-NADA EAST KYUSHU SEAWATER

  • Winarso, Gathot;Hiroyuki, Kikukawa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.475-478
    • /
    • 2006
  • Total primary production resulting from the photosynthetic process can be defined as the amount of organic matter produced in a given period of time. It is proportional to the chlorophyll-a (chl-a) values in the surface layer of the ocean. The MODIS board on Aqua satellite measures visible and infrared radiation in 36 wavebands, providing simultaneous images of chl-a concentration and sea surface temperature (SST) in the upper layer of the sea. The seasonal distribution of chl-a concentration during one year from April 2005 to March 2006 was examined. Light has a role of starting the seasonal cycle. The Kuroshio Current in this area induces many oceanographical features affecting to the change of seasonal control. The chl-a concentration is also seasonal, which is low in summer and high in winter. In summer, the meandering of Kuroshio Current induces strong eddies and increases the chl-a concentration. In autumn, the delayed small autumn bloom occurred until last December due to the Kuroshio Current. When the Kuroshio axis moves far from the coast, the coastal water dominates and increases the concentration even in the winter. The spring bloom starts early at the beginning of March and decreases during the spring.

  • PDF

Scaling law in MHD turbulence small-scale dynamo

  • Park, Kiwan;Ryu, Dongsu
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • Magnetohydrodynamics(MHD) dynamo depends on many factors such as viscosity ${\gamma}$, magnetic diffusivity ${\eta}$, magnetic Reynolds number $Re_M$, external driving source, or magnetic Prandtl number $Pr_M$. $Pr_M$, the ratio of ${\gamma}$ to ${\eta}$ (for example, galaxy ${\sim}10^{14}$), plays an important role in small scale dynamo. With the high PrM, conductivity effect becomes very important in small scale regime between the viscous scale ($k_{\gamma}{\sim}Re^{3/4}k_fk_f$:forcing scale) and resistivity scale ($k_{\eta}{\sim}PrM^{1/2}k_{\gamma}$). Since ${\eta}$ is very small, the balance of local energy transport due to the advection term and nonlocal energy transfer decides the magnetic energy spectra. Beyond the viscous scale, the stretched magnetic field (magnetic tension in Lorentz force) transfers the magnetic energy, which is originally from the kinetic energy, back to the kinetic eddies leading to the extension of the viscous scale. This repeated process eventually decides the energy spectrum of the coupled momentum and magnetic induction equation. However, the evolving profile does not follow Kolmogorov's -3/5 law. The spectra of EV (${\sim}k^{-4}$) and EM (${\sim}k^0$ or $k^{-1}$) in high $Pr_M$ have been reported, but our recent simulation results show a little different scaling law ($E_V{\sim}k^{-3}-k^{-4}$, $EM{\sim}k^{-1/2}-k^{-1}$). We show the results and explain the reason.

  • PDF

Holdup and Flow Behavior of Fluidized Solid Particles in a Liquid-Solid Circulating Fluidized Bed

  • Lim, Dae Ho;Lim, Ho;Jin, Hae Ryong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • 제52권3호
    • /
    • pp.371-377
    • /
    • 2014
  • Characteristics of holdup and flow behavior of fluidized solid particles were investigated in a liquid-solid circulating fluidized bed ($0.102m{\times}3.5m$). Effects of liquid velocity ($U_L$), particle size ($d_P$) and solid circulation rate ($G_S$) on the solid holdup, overall particle rising velocity, slip velocity between liquid and particles and hydrodynamic energy dissipation rate in the riser were examined. The particle holdup increased with increasing $d_P$ or $G_S$ but decreased with increasing $U_L$. The overall particle rising velocity increased with increasing $U_L$ or $G_S$ but decreased with increasing $d_P$. The slip velocity increased with increasing $U_L$ or $d_P$ but did not change considerably with $G_S$. The energy dissipation rate, which was found to be closely related to the contacting frequency of micro eddies, increased with increasing $d_P$, $G_S$ or $U_L$. The solid particle holdup was well correlated with operating variables such as $U_L$, $d_P$ and $G_S$.

아래 평판이 미소한 불균일 온도를 갖는 두 수평 평판 사이에서의 자연 대류 : Pr=0.7 (NATURAL CONVECTION BETWEEN TWO HORIZONTAL PLATES WITH SMALL MAGNITUDE NON-UNIFORM TEMPERATURE IN THE LOWER PLATE : Pr=0.7)

  • 유주식
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.35-40
    • /
    • 2013
  • Natural convection of air with Pr=0.7 between two horizontal plates with small magnitude non-uniform temperature distribution[${\in}{\Delta}Tsin({\kappa}X/H)$, H : gap width, X : horizontal coordinate] in the lower plate is numerically(${\in}=0.01$) investigated. In the conduction-dominated regime with $Ra{\leq}1700$, two upright cells are formed over one wave length($2{\pi}/{\kappa}$). For small wave number, the flow becomes unstable with increase of Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The flow patterns are classified by the number of eddies over one wave length. When ${\kappa}=1$, a transition of $2{\rightarrow}4{\rightarrow}6$ eddy flow occurs with increase of Rayleigh number, and no hysteresis phenomenon is observed. Dual and triple solutions are found for ${\kappa}=1$, and transitions of $10{\rightarrow}8$, $8{\rightarrow}6$, $6{\rightarrow}4{\rightarrow}2$ eddy flow occur with decrease of Rayleigh number.

유선형 스텝에 의해 안정화된 예혼합화염의 구조와 연소특성에 관한 연구 ($\Pi$) (A Study on the Flame Structure and Combustion Charactexistics of a Premixed Flame Stabilized by a Streamline Step( $\Pi$))

  • 이재득;최병륜
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1661-1668
    • /
    • 1990
  • 본 연구에서는 코히런트 와(渦)에 지배되는 난류 예혼합화염의 미세구조를 밝 히기 위해 슐리이렌사진과 온도, 이온전류의 3가지를 동시에 측정하고, 그 변동량을 통계처리, 분석하여, 미시적인 화염구조 모델을 제시하고자 한다.

충돌제트계에서 사다리형 로드 배열에 의한 열전달촉진에 관한 연구 (Heat Transfer Enhancement by Trapezoid Rod Array in Impinging Jet System)

  • 임태수;금성민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.260-267
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of jet flow and heat transfer caused by trapezoid rods array in impinging jet system. In this study, trapezoid rods have been set up in front of flat plate to serve as a turbulence promoter. The bottom width of trapezoid rod was W=4, 8mm and oblique angle were $80^{\circ}$. The space from rods to the heating surface was C=1, 2, 4mm, the pitch between each rods was P=30, 40, 50mm, and the distance from nozzle exit to flat plate was H=100, 500mm. This results were compared with the case without trapezoid rods. As a result, when rods are installed in front of the impinging plate, the acceleration of the jet flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Among test conditions, the heat transfer performance was best for the condition of W=8mm, C=1mm, P=30mm and H/B=10. The maximum heat transfer rate is about 1.9 times larger than that without trapezoid rods.

  • PDF

2차원 충돌 분류계에서 사다리형 로드 배열에 의한 열전달 촉진 효과 (A Study on the Heat Transfer Enhancement by Trapezoid Rod Arrays in 2-Dimensional Impinging Jet System)

  • 임태수;금성민;이창언
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1659-1666
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of air flow and heat transfer caused by trapezoid rods array in impinging air jet system. Trapezoid rods have been set up on front of flat plate to act as a turbulence promoter. Local Nusselt numbers were determined as a function of three parameters : (a) the space from re(Is to heating surface(C=1, 2, 4mm), (b) the pitch between each rods(P=30, 40, 50mm), (c) the distance from nozzle exit to flat plate(H/B=2, 6, 10). The measurements were compared with those of the experiment without trapezoid rods. As a result, when rods are installed in front of the impinging palate, the acceleration of the flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Heat transfer performance was best under the condition of C=1mm and as the pitch is 30mm. The maximum rate of heat transfer augmentation is about 1.9 times greater compared to that without trapezoid rods.

DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part I : 비반응 유동장 (Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part I : Non-Reacting Flowfield)

  • 원수희;정인석;최정열
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.863-878
    • /
    • 2009
  • 초음속 주 유동내 연료의 수직분사에 따른 비정상 3차원 유동장을 DES 난류 모델을 이용해 모사하였다. 해석 결과는 시간에 따른 에디 거동 및 생성 빈도에 대해 실험과 비교되었으며, 에디 생성 메커니즘을 이해하기 위해 분사기 주변 와도에 대한 분석을 수행하였다. DES 난류 모델은 에디의 대류 특성을 비교적 정확하게 모사하고 있으나, 에디 생성빈도는 다소 과대 예측하고 있다. 분사기 상류 재순환 영역에서 엇회전하는 와류가 번갈아 떨어져 나가면서 에디 구조가 생성된다.

인접한 두 수중운동체 주위의 유동 해석을 위한 가상경계법의 적용 (APPLICATION OF AN IMMERSED BOUNDARY METHOD TO SIMULATING FLOW AROUND TWO NEIGHBORING UNDERWATER VEHICLES IN PROXIMITY)

  • 이경준;양경수
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.49-57
    • /
    • 2013
  • Analysis of fluid-structure interaction for two nearby underwater vehicles immersed in the sea is quite challenging because simulation of flow around them is very difficult due to the complexity of underwater vehicle shapes. The conventional approach using body-fitted or unstructured grids demands much time in dynamic grid generation, and yields slow convergence of solution. Since an analysis of fluid-structure interaction must be based on accurate simulation results, a more efficient way of simulating flow around underwater vehicles, without sacrificing accuracy, is desirable. An immersed boundary method facilitates implementation of complicated underwater-vehicle shapes on a Cartesian grid system. An LES modeling is also incorporated to resolve turbulent eddies. In this paper, we will demonstrate the effectiveness of the immersed boundary method we adopted, by presenting the simulation results on the flow around a modeled high-speed underwater vehicle interacting with a modeled low-speed one.