• Title/Summary/Keyword: ecoprovince

Search Result 3, Processing Time 0.018 seconds

Assessment of Productive Areas for Quercus acutissima by Ecoprovince in Korea Using Environmental Factors (환경요인을 이용한 생태권역별 상수리나무의 적지판정)

  • Kim, Tae U;Sung, Joo Han;Kwon, Tae-Sung;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.437-445
    • /
    • 2013
  • This study was conducted to develop site index equations and to estimate productive areas of Quercus acutissima by ecoprovince in Korea using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 48 environmental factors including 19 climatic variables were regressed on site index to develop site index equations. Four to six environmental factors for Quercus acutissima by ecoprovince were selected as independent variables in the final site index equations. The result showed that the coefficients of determination for site index equations were ranged from 0.30 to 0.41, which seem to be relatively low but good enough for the estimation of forest stand productivity. The site index equations developed in this study were also verified by three evaluation statistics such as the estimation bias of model, precision of model, and mean square error of measurement. According to the evaluation statistics, it was found that the site index equations fitted well to the test data sets with relatively low bias and variation. As a result, it was concluded that the site index equations were well capable of estimating site quality. Based on the site index equations of Quercus acutissima by ecoprovince, the productive areas by ecoprovince were estimated by applying GIS technique to the digital forest site map and climate map. In addition, the distribution of productive areas by ecoprovince was illustrated by using GIS technique.

Predicting the Effect of Climate Change on Forest Biomass by Different Ecoprovinces and Forest Types in Korea (기후변화에 따른 생태권역별·임상별 산림 바이오매스 변화량 예측)

  • Shin, Jin Young;Won, Myoung Soo;Kim, Kyongha;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.119-129
    • /
    • 2013
  • This study was conducted to predict the changes in forest biomass in different ecoprovinces and forest types under climate change scenario based on cumulative data (i.e., digital forest site and climate maps, National Forest Inventory data) and various prediction models. The results from this study showed that predicted changes over time in biomass varied according to ecoprovince and forest type in Korea. A reduction in biomass was predicted for all forest types associated with the mountain, southeastern hilly, and southwestern hilly ecoprovinces. On the other hand, the biomass was predicted to increase for the coniferous forest and mixed-forest types in the central hilly ecoprovince. Furthermore, increases in biomass are predicted for all forest types, except coniferous forests, in the coastal ecoprovince. The results from this study provide a basis for developing technology to predict forest impacts due to climate change by predicting changes in forest biomass based on the estimation of site index.

ECOREGION CLASSIFICATION WITH CLIMATE FACTORS AND FOREST FIRE

  • Shin, Joon-Hwan
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2002.12a
    • /
    • pp.94-95
    • /
    • 2002
  • South Korea is divided into five ecoprovinces and sixteen ecoregions. The criteria for ecoprovince classification are ecosystem connectivity and cultural homogeneity. Ecoregions are classified by cluster analysis. The variables used in the analysis are latitude, longitude, seasonal mean temperature, and seasonal precipitation. The large forest fires occurred in the specific ecoregions including Kangwon coastal ecoregion, WoolYoung coastal ecoregion, Hyungsan Taehwa coastal ecoregion, Upper Nagdong river basin ecoregion and Southeastern inland ecoregion. The largest forest fire in the korean history occurred in Kangwon coastal ecoregion in the year 2000. The fire devastated the forestland over 25,000ha. Korea Forest Service, Ministry of Environment, Province Kangwon and NGO organized an investigation committee for the restoration of the burnt area. The committee suggested restoration principles and also forged a restoration strategy of the Kangwon burnt area.

  • PDF