• Title/Summary/Keyword: ecological concrete

Search Result 169, Processing Time 0.021 seconds

Characteristics of sound absorption materials by using ecological aggregates (에코골재를 사용한 흡음재의 특성)

  • Kim, Kang-Duk;Ryu, Yu-Gwang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.264-270
    • /
    • 2008
  • Ecological lightweight aggregates were made by using the wastes come from various industrial fields. Wastes were crushed and pulverized by mills and a certain portions of wastes were mixed and formed by pelletizer like small beads. The formed lightweight aggregates were finally sintered with $1125^{\circ}C$/15 min conditions by using rotary kiln. Lightweight concrete sound absorbers were made of ecological lightweight aggregates K73 (Coal bottom ash 70 wt%: Dredged soil 30 wt%) and K631 (Clay 60 wt%: Stone sludge 30 wt%: Spent bleaching clay 10 wt%). For the reference, lightweight concrete sound absorbers made of DL (German made 'L' company LWA) were also made under the same conditions. Sound absorption characteristics were observed and measured according to the kinds of aggregates, water/cement ratio (W/C=20, 25, and 30%), and designed pore rates (V=20, 25, and 30%). The pore rates of the lightweight concrete sound absorber were turned out to be 5 to 10% higher than designed ones. Absorption coefficient of the lightweight concrete sound absorber by using K631 aggregates with W/C=20% and V=25% conditions was 0.88 at 1000 and 3150 Hz from the measurement by the impedance tube.

A Study on the Sound Characteristic of Insulation and Manufacturing of Lightweight Concrete for Wall System (벽체용 경량 콘크리트의 제조 및 흡차음 특성에 관한 연구)

  • Kim, Hong-Yong;Kim, Soon-Ho
    • KIEAE Journal
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • This paper deals with the experimental for manufacturing the lightweight buildng materials with portland cement, fly ash, slag, lime, gypsum, and aluminum powder system. Aluminum powder was added an aerating agent. Specific gravity range of lightweight concrete specimens were 0.6~0.9g/cm3. These specimens properties studied by means of specific gravity, compressive strength, absorption coefficient, transmission loss and scanning electron microscopy. Cellular concrete with maximum compressive strength was 41kgf/cm2 by obtained Al=0.05wt.%. Moreover, the aeration lightweight concrete showed excellent sound absorption properties.

A Study on Construction and Quality in accordance with the Field Application of Hwangto Concrete (황토콘크리트의 현장적용에 따른 시공 및 품질 특성에 관한 연구)

  • Hwang, Hey Zoo;Moon, Je Chun;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.9 no.1
    • /
    • pp.91-97
    • /
    • 2009
  • In this thesis presents the application to the field of Hwangto-used concrete highlighted as an eco-friendly material and performs an experiment in the aspect of construction and quality on the construction for all parts of buildings, rather than for some parts of buildings as shown from existing application and got the conclusion as followings. 1) It was turned out that Hwangto concrete showed lower hydrated heat and arid contraction comparing to those of cement concrete. And this phenomenon is judged to appear high when applied to mass building and huge span structures. 2) The construction of Hwangto concrete is judged to be possible in applying to constructions since the mechanical construction seems to be possible by using pump car and ready-mixed concrete which are used at the practical sites at the moment. 3) The pockmarks appearing on the exposure surface were about 2% of total area. This has great cohesion by Hwangto concrete but is judged that it will be improved through enough vibration stamping. Through the experiments of quality and construction of Hwangto concrete as environment-friendly construction materials, it is possible to judge modernized application of Hwangto concrete. It is in need of more studies about economical efficiency, structural stability, design application, etc. afterwards.

Characteristics of Strength and Durability of Hwangto-Concrete according to its Mixing Condition (황토 콘크리트의 배합조건에 따른 강도성상 및 내구성)

  • Hwang, Hey Zoo;Roh, Tae Hak;Kim, Jin Il
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.55-60
    • /
    • 2008
  • The purpose of this study is to increase the use of Hwangto and examine the strength according to what it is compounded with. Hwangto-concrete containing Hwanto without cement nor organic chemical products were compared to the traditional cement concrete through some durability experiments. We expect to gain more knowledge on the potentials of Hwangto-concrete as an architectural source. 1) As Hwangto binder amount rises, the value of slump increases too. The reason is that the increase of the quantity of cement causes the increase of the amount of material and the decrease of the amount of aggregate. 2) When the mixed component into Hwangto-concrete remains at 2%, the compress strength is generally dispersed high along the per unit fission, in case the amount of which is at $400(g/m^3)$. The highest compress strength is 39MPa. It means that it can be applied to common structures and we need to conduct a basic property test to ensure the strength and fluidness. 3) Hwangto-concrete is expected to be highly used in the ocean structure and chemical industry because it has better resistance to sulfuric acid and to hydrochloric acid than the cement-concrete has. The result of this study is as follows. It is expected that Hwangto-concrete will be widely applied and further research on its durability and tests for its basic substantial characteristics based on future component added to it.

Influence of Mix Factors and Mixing Ratio of Aggregate on the Strength and Water Permeability of Porous Concrete (포러스 콘크리트의 배합요인 및 골재 혼합비율이 강도 및 투수성능에 미치는 영향)

  • 김무한;김규용;백용관
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.91-98
    • /
    • 2000
  • Porous concrete having continuous voids is gaining more interest as an ecological material. It has several useful functions such as water and air permeability, sound absorption, etc. Its strengths are considerably lower than those of conventional concrete due to the large and continuous voids in it. This study has been carried out to investigate the influence of mix factors and mixture proportion of aggregate on the strengths and water permeability of porous concrete. And it has been carried out to investigate the evaluation of void of porous concrete by the ultra-sonic pulse velocity. The results f this study are as follows: 1) The theoretical void ratio has greater influence than any other factor on the strengths and water permeability of porous concrete. And it is a little affected by the replacement proportion of silica-fume and mixture proportion of aggregate. 2) Because the coefficients of correlation between the void ratio and ultra-sonic pulse velocity were relatively high, it will be possible that the void ratio is predicted by the ultra-sonic pulse velocity.

Strength and permeability of fiber-reinforced concrete incorporating waste materials

  • Xu, Yun;Xu, Yin;Almuaythir, Sultan;Marzouki, Riadh
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.133-152
    • /
    • 2022
  • Ecological issues such as natural resource reduction and enormous waste disposals are increasingly leading in developing civilization toward sustainable construction. The two primary environmental issues are the depletion of natural resources and the disposal of trash in open landfills. Waste steel fiber (WSF) was investigated for usage as a cement-based concrete (CBC) constituent in this research. Recycling waste fibers both makes cement composites more long and cost-effective, also aids in pollution reduction. The objective of this study is to analyze the impacts of waste fiber on the fresh and mechanical features of concrete using recycled additives. A comparative research on the durability and mechanical qualities of fiber-reinforced concrete (FRC) constructed with natural aggregates was conducted for this aim. The obstacles to successful WSF recycling methods application in the building industry have been investigated, resulting that CBCs with these fibers make an economic and long lasting choice to deal with waste materials. The workability of fiber enhanced concrete was found to be comparable to that of normal concrete. Fibers have a considerable impact on the splitting tensile strength, flexural and compressive strength of recycled concrete. Fiber may enhance the water permeability. When the WSF content is 0.6 kg/m3, the water absorption is nearly half. Fibers would have no effect on its permeability.

Analysis of Rana coreana Behavior According to the Slope Angle Degree of Escape Ramp (콘크리트 수로 탈출로 경사각에 따른 한국산개구리 행동 분석)

  • Lee, Taeho;Kim, Jungkwon;Seo, Jihye;Jang, Moonjeong;Choi, Taeyoung;Chang, Minho
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2022
  • The purpose of this study is to propose the angle-limit of the escape ramp by analyzing the frog behavior characteristics according to the inclination angle of the waterway escape ramp installed in the concrete U-bench plume pipe channel. Forthe experiment, an escape test device was manufactured with the same shape and number of materials applied in the field. And Rana coreana living in paddy wetlands were sel selected. The main behaviors of frogs on the slope were 'jumping', 'crawling' and 'slipping', and afterrecording the behavioralresults according to the inclination angle, statistical analysis was conducted using the chi-square test method. As a result of the analysis, there was no statistically significant difference between 30° and 40°. This result is an evidence for expanding the standard of inclination angle 30° suggested in the 'Guidelines for Installation and Management of Ecological Pathways' to a maximum of 40°. However, further research is required in that the escape ramp targets not only Korean frogs but also various small wild animals. However, considering that various wild animals are affected by artificial canals, additional studies using various target wild animals are needed.

Experimental Study of Flexural Behavior of Reinforced Concrete Beam Using WFS and Recycled Aggregate (순환골재와 폐주물사를 활용한 철근콘크리트보의 휨거동에 관한 실험연구)

  • Kim, Seong-Soo;Lee, Dae-Kyu
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.61-68
    • /
    • 2008
  • For the recycling of the resources and the preservation of the environment, this study's purpose is to measure flexural behavior of the reinforced concrete beams with the major variables like concrete strength, replacement ratio of the recycled aggregate and the waste foundry sand and the tension reinforcement ratio and to present the data of the recycled aggregate used for the structure design. The experiment on the flexural behavior resulted in the followings. The ultimate strength of recycled R/C beam was manipulated proportionate to the tension reinforcement ratio, however the strength instantly decreased after passing the ultimate load due to the destroyed concrete of the compression side. The deflection at the maximum load varied from the tension reinforcement ratio by 5.5 times. The test specimen with the tension reinforcement ratio less than $0.5{\rho}b$ showed constant curve without change in the load from the yield to the ultimate load in contrast to the distinctive plastic region where the displacement was rising. Although the strain of main tension steel with the reinforcement ratio indicate different, the design of recycled concrete member can be applied for current design code for reinforced concrete structure as the ratio of tension reinforcement district the under the reinforcement ration in a balanced strain condition.

Tribological behavior of concrete with different mineral additions

  • Belaidi, Amina;Hacene, Mohammed Amine Boukli;Kadri, El-Hadj;Taleb, Omar
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.231-238
    • /
    • 2021
  • The present work aims at investigating the effects of using various fine mineral additions as partial replacement to Portland cement on the tribological properties of concrete. To achieve this goal, concrete mixtures were prepared with different percentages (10, 20 and 30%) of limestone fillers (LF) and natural pozzolana (NP), and (20, 40 and 60%) of blast furnace slag (BFS). The interface yield stress (τ0) and viscous constants (η) that allow characterizing friction at the concrete-pipe wall interface were determined using a rotational tribometer. In addition, the compositions of the boundary layers that formed in the pumping pipes of the different concretes under study were also identified and analyzed. The experimental results obtained showed that the concretes studied have a linear tribological behavior that can be described by the Bingham model. Furthermore, the use of different mineral additions, especially limestone fillers and blast furnace slags, even at high rates, had a beneficial effect on the optimization of the volume of paste present in the boundary layer, which made it possible to significantly reduce the viscous constant of concrete. However, a maximum rate of 10% of natural pozzolana was recommended to achieve tribological properties that are favorable to the pumpability of concrete.

Mechanical Properties of High Strength Shear Connector (고강도(高强度) 스터드 볼트의 역학적 특성에 관한 연구)

  • Eom, Chul Hwan
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.93-98
    • /
    • 2012
  • The headed studs those are used extensively for steel-composite construction is specified as SS400 at the current Korean Standard specification considering the welding condition. And the corresponding equation for the shear force calculation is limited for the use of compression strength of concrete below $300kg/cm^2$. However, it is expected that the high strengthening and precast of both steel and concrete due to the necessity of shear connector or other connecting material for the combination of steel and concrete. Therefore, the experimental results obtained during the development process of high strength stud for the connection of high strength concrete and the steel member are reported in this paper. Also the effectiveness of newly developed shear connector using pipe to increase the stiffness of a stud is verified by comparing both the stiffness and the strength with common stud bolt through the welding ability, mechanical characteristics and experimental investigation.