• 제목/요약/키워드: eco-friendly agent

검색결과 117건 처리시간 0.023초

Development of Near-Critical Water Reaction System for Utilization of Lignin as Chemical Resources

  • 엄희준;홍윤기;박영무;정상호;이관영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.251.2-251.2
    • /
    • 2010
  • Plant biomass has been proposed to be an alternative source for petroleum-based chemical compounds. Especially, phenolic chemical compounds can be obtained from lignin by chemical depolymerization processes because lignin consists of complex aromatic polymer such as trans-p-coumaryl, coniferyl and sinapyl alcohols, etc. Phenolic chemical compounds from lignin were usually produced in super critical water. However, we applied Near-critical water (NCW) system because NCW is known as a good solvent for lignin depolymerization. Organic matter like lignin can be solved in NCW system and the system has a unique acid-base property without conventional non-eco-friendly chemicals such as sulfuric acid and sodium hydroxide. In this work, we tried to optimize the NCW depolymerization system by adjusting the processing variables such as reaction time, temperature and pressure. Moreover, the amount of additional phenol was optimized by changing the molar ratio between water and phenol. Phenol was used as capping agent to prevent re-polymerization of active fragment such as formaldehyde. Alkali-lignin was used as a starting material and characterized by a Solid State 13C-NMR, FT-IR and EA (Elemental Analysis). GC-MS analysis confirmed that o-cresol, p-cresol, anisole and 4-hydroxyphathalic acid were the main product and they were quantitatively analyzed by HPLC.

  • PDF

핵제 및 가소제 첨가에 따른 PLA(PolyLactic Acid)의 결정화도 개선 및 결정구조에 관한 연구 (Effects of nucleating agents and plasticizers on the crystallinity and crystal structure of PLA(PolyLactic Acid))

  • 박은조;박헌진;김동학
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.914-920
    • /
    • 2015
  • 본 논문에서는 PLA(PolyLactic Acid)의 결정화도 및 결정구조에 대해 연구하였다. PLA는 옥수수 전분으로부터 추출한 Lactic acid로부터 얻어지는 친환경적인 열가소성 플라스틱으로 매립시 미생물에 의해 완전히 분해되는 소재로 각광받고 있지만 열 안정성이 낮고 낮은 결정화도로 인해 높은 기계적 물성이 요구되는 용도에는 부적합한 단점을 가지고 있다. 이 중에서도 낮은 결정화도와 느린 결정화 속도는 사출 성형 공정에서 Cycle time을 증가시키는 요인으로 다른 소재와의 경쟁에 매우 큰 단점으로 나타난다. 본 논문에서는 핵제 및 가소제의 종류와 함량에 따른 결정화도 및 결정화 속도의 변화를 연구함으로써 궁극적으로 사출 성형 공정에서 Cycle time을 개선하고자 하였다.

과산화수소와 초음파 표백 시스템에 따른 닥나무 펄프의 표백 효율 특성 (Properties of Bleachability of Paper Mulberry Pulp by Hydrogen Peroxide and Ultrasonication Bleaching System)

  • 서진호;김형진
    • 펄프종이기술
    • /
    • 제44권1호
    • /
    • pp.65-73
    • /
    • 2012
  • Nowadays, the concern on the environmental load of bleaching process gave rise to the process of ECF(elemental chlorine free) and TCF(total clorine free). These sequences are based on oxygen-derived compounds such as oxygen, ozone, and hydrogen peroxide which is used as a typical eco-friendly bleaching agent. In this study, paper mulberry pulp was bleached with hydrogen peroxide and some bleaching process were accompanied with ultrasonication in order to increase the bleaching efficiency. The best bleaching efficiency of paper mulberry pulp was obtained in the condition of hydrogen peroxide and ultrasonication(20 kHz) bleaching system at $45^{\circ}C$ for 30 min. The brightness and kappa number of paper mulberry pulp were gained to 5.09% and 3.52 respectively. and yield was slightly loosed to 2%. Therefore, the efficiency of hydrogen peroxide and ultrasonication bleaching system of paper mulberry pulp was superior to the conventional hydrogen peroxide bleaching system. Magnesium sulfate acted as a bleaching stabilizer for the increasement of yield. As a result, the yield and viscosity were increased to 2.2% and 12% respectively.

친환경 고강도 인견사용 종이 제조 (Preparation of Eco-friendly and High Strength Paper for Viscose Rayon Yarn)

  • 황성준;김형진;배백현
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.154-163
    • /
    • 2015
  • Because of acute or chronic intoxication by carbon disulfide, viscose rayon industry is strictly subjected to environment regulatory approval. Recently, non-wood fibers are frequently considered as a raw materials for the manufacture of specialty paper for the higher physical strength and functionality. Among the non-wood fibers, hemp bast fiber is one of the most widely used materials in viscose rayon yarn industries. In this study, the handsheet for manufacturing the viscose rayon yarn was prepared with wood pulp fibers and hemp bast fibers. The proper mixing ratio of wood fibers and hemp bast fibers with dry-strength agent and nano-celluloses was analysed in terms of physical and mechanical strength of sheet for viscose rayon yarn. The papermaking conditions for high mechanical strength of sheet were obtained by mixing the SwBKP and HwBKP fibers with freeness level of 200 mL CSF. The dual polymer system by controlling the addition ratio of PVAm and anionic PAM was also important. The addition of nano-cellulose into wet-end furnishes increased the physical strength of sheet, and improved the paper structure for the production of viscose rayon yarn.

Oxalic Acid from Lentinula edodes Culture Filtrate: Antimicrobial Activity on Phytopathogenic Bacteria and Qualitative and Quantitative Analyses

  • Kwak, A-Min;Lee, In-Kyoung;Lee, Sang-Yeop;Yun, Bong-Sik;Kang, Hee-Wan
    • Mycobiology
    • /
    • 제44권4호
    • /
    • pp.338-342
    • /
    • 2016
  • The culture filtrate of Lentinula edodes shows potent antimicrobial activity against the plant pathogenic bacteria Ralstonia solanacearum. Bioassay-guided fractionation was conducted using Diaion HP-20 column chromatography, and the insoluble active compound was not adsorbed on the resin. Further fractionation by high-performance liquid chromatography (HPLC) suggested that the active compounds were organic acids. Nine organic acids were detected in the culture filtrate of L. edodes; oxalic acid was the major component and exhibited antibacterial activity against nine different phytopathogenic bacteria. Quantitative analysis by HPLC revealed that the content of oxalic acid was higher in the water extract from spent mushroom substrate than in liquid culture. This suggests that the water extract of spent L. edodes substrate is an eco-friendly control agent for plant diseases.

Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications

  • Pejjai, Babu;Reddy, Vasudeva Reddy Minnam;Seku, Kondaiah;Cho, Haeyun;Pallavolu, Mohan Reddy;Le, Trang Thi Thuy;Jeong, Dong-seob;Kotte, Tulasi Ramakrishna Reddy;Park, Chinho
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2430-2441
    • /
    • 2018
  • Selenium (Se)-rich binary Cu-Se and In-Se nanoparticles (NPs) were synthesized by a modified heat-up method at low temperature ($110^{\circ}C$) using the gum exudates from a cherry blossom tree. Coating of CISe absorber layer was carried out using Se-rich binary Cu-Se and In-Se NPs ink without the use of any external binder. Our results indicated that the gum used in the synthesis played beneficial roles such as reducing and capping agent. In addition, the gum also served as a natural binder in the coating of CISe absorber layer. The CISe absorber layer was integrated into the solar cell, which showed a power conversion efficiency (PCE) of 0.37%. The possible reasons for low PCE of the present solar cells and the steps needed for further improvement of PCE were discussed. Although the obtained PCE is low, the present strategy opens a new path for the fabrication of eco-friendly CISe NPs solar cell by a relatively chief non-vacuum method.

표층/심층혼합처리용 굴패각 고화재의 고화성능 평가 (Stabilizing Capability of Oyster Shell Binder for Soft Ground Treatment)

  • 윤길림;김병탁
    • 한국지반공학회논문집
    • /
    • 제22권11호
    • /
    • pp.143-149
    • /
    • 2006
  • 무단 매립이나 일시 야적으로 환경오염을 유발하는 굴패각을 활용한 친환경 굴패각고화재의 고화성능을 평가하는 일련의 실험연구를 수행하였다. 연구목적은 연약지반개량에 적용하기 위하여 고화재의 고화능력을 평가하고 지반개량 효과를 규명하는 것이다. 이를 위하여 굴패각 고화재 및 시멘트 고화재를 가지고 준설토사에 적용하여 양생기간 및 물/고화재 비를 다르게 변화하면서 일축압축실험을 수행하여 상호 비교하였다. 실내모형 실험을 수행한 결과,굴패 각 고화재는 표층이나 천층 및 심층혼합처리공법으로 연약지반을 개량하는 경우에 시멘트 고화재 보다 고화성능이 우수한 것으로 나타났다.

Tribological Improvement of Lubricants Using Silicone Rubber Powders in Hydrogen Compressors

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.78-83
    • /
    • 2024
  • The development of eco-friendly alternative energy sources has become a global priority owing to the depletion of fossil fuels and an increase in environmental concerns. Hydrogen energy has emerged as a promising clean energy source, and hydrogen compressors play a crucial role in the storage and distribution of compressed hydrogen. However, harsh operating conditions lead to the rapid deterioration of conventional lubricants in hydrogen compressors, thereby necessitating the development of advanced lubrication technologies. This study introduces micrometer-sized silicone rubber powders as lubricant additives to enhance the lubrication performance of hydraulic oils in hydrogen compressors. We prepare silicone rubber powders by varying the ratio of the silicone rubber base to the curing agent and investigate their effects on interfacial properties, friction behavior, and wear characteristics. The findings reveal that the incorporation of silicone rubber powders positively influences the surface affinity, wettability, friction reduction, and wear resistance of the lubricants on the 304SS substrate. Moreover, we identify the optimal lubricant formulations, with a 15:1 ratio demonstrating the most effective friction reduction and a 5:1 ratio exhibiting the highest wear resistance. The controlled surface modification by the silicone rubber powder and the enhanced interfacial characteristics of the powder-containing lubricants synergistically contribute to the improved lubrication performance. These results indicate the potential of silicone rubber powder additives for the development of long-life lubrication solutions for hydrogen compressors and related applications, ultimately contributing to the advancement of sustainable energy technologies.

초고압을 이용한 반고형 사과 이유식 개발 및 품질평가 (Development of Semi-Solid Apple Baby Food using High Pressure Processing and Quality Evaluation)

  • 조형용;조은경;김병철;신해헌
    • 한국식품영양학회지
    • /
    • 제24권4호
    • /
    • pp.777-785
    • /
    • 2011
  • 비열처리가공기술 중 하나로 새롭게 주목받고 있는 초고압처리를 반고형 형태의 친환경 유기농 이유식 제조에 적용하여 완제품 형태로 제조 후 냉장 조건으로 저장하여 저장기간에 따른 제품 안전성을 조사하였다. 가열 처리를 하지 않고 550 MPa 압력에서 3분 동안 초고압 처리하여 냉장 상태로 15일 동안 저장한 결과, 일반세균과 대장균 모두 검출되지 않아 미생물학적 안전성을 확인할 수 있었으며, 초고압 처리를 하지 않은 대조군에서 일반세균이 $2.54{\times}10^3$, $7.85{\times}10^2$ CFU/g 수준으로 검출되었던 것과 비교했을 때 초고압 처리를 하는 것이 제품의 신선도를 살리고 제품의 안전성을 유지하기 위해 적합한 처리법이라고 판단되어진다. 초고압 처리를 통한 물성 변화는 처리 전 대조구와 점도, 스푼풀 현상을 비교하였을 때 큰 차이가 나타나지 않는 것으로 나타났고, 그 결과 사과의 신선한 상태를 유지하고 미생물학적 안전성 역시 유지하면서 냉장상태로 약 2주간 저장이 가능한 친환경 반고형 이유식을 제조할 수 있었다.

화력발전소 바텀애쉬와 수산화나트륨 활성화제를 이용해 제작한 지오폴리머의 압축강도 특성 (Compressive Strength Properties of Geopolymer Using Power Plant Bottom Ash and NaOH Activator)

  • 안응모;조성백;이수정;미야우치 히로유키;김규용
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.71-77
    • /
    • 2012
  • When a new bonding agent using coal ash is utilized as a substitute for cement, it has the advantages of offering a reduction in the generation of carbon dioxide and securing the initial mechanical strength such that the agent has attracted strong interest from recycling and eco-friendly construction industries. This study aims to establish the production conditions of new hardening materials using clean bottom ash and an alkali activation process to evaluate the characteristics of newly manufactured hardening materials. The alkali activator for the compression process uses a NaOH solution. This study concentrated on strength development according to the concentration of the NaOH solution, the curing temperature, and the curing time. The highest compressive strength of a compressed body appeared at 61.24MPa after curing at $60^{\circ}C$ for 28 days. This result indicates that a higher curing temperature is required to obtain a higher strength body. Also, the degree of geopolymerization was examined using a scanning electron microscope, revealing a micro-structure consisting of a glass-like matrix and crystalized grains. The microstructures generated from the activation reaction of sodium hydroxide were widely distributed in terms of the factors that exercise an effect on the compressive strength of the geopolymer hardening bodies. The Si/Al ratio of the geopolymer having the maximum strength was about 2.41.