• Title/Summary/Keyword: eclipsing - Stars

Search Result 89, Processing Time 0.026 seconds

NEW VARIABLE STARS AROUND THE CEPHEID VARIABLE TU CAS (세페이드형 변광성 TU CAS 근처의 새로운 변광성)

  • Jeon, Young-Beom;Park, Yoon-Ho;Nam, Ki-Hyung;Lee, Kyung-Hoon
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.29-35
    • /
    • 2005
  • Time-series observations were carried out using a 155mm refractor and a $2k{\times}3k$ CCD camera at Bohyunsan Optical Astronomy Observatory. We found 38 new variable stars in the $2.3^{\circ}{\times}2.4^{\circ}$ region around the Cepheid variable TU Cas: 22 eclipsing binary stars, 11 ${\delta}$ Scuti type stars and an RR Lyrae star, and 4 unclassified variables.

ORBITAL PERIOD VARIATION STUDY OF THE ALGOL ECLIPSING BINARY DI PEGASI

  • Hanna, M.A.;Amin, S.M.
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.4
    • /
    • pp.151-159
    • /
    • 2013
  • We discuss the orbital period changes of the Algol semi-detached eclipsing binary DI Peg by constructing the (O-C) residual diagram via using all the available precise minima times. We conclude that the period variation can be explained by a sine-like variation due to the presence of a third body orbiting the binary, together with a long-term orbital period increase (dP/dt=0.17 sec/century) that can be interpreted to be due to mass transfer from the evolved secondary component (of rate $1.52{\times}10^{-8}M_{\odot}/yr$) to the primary one. The detected low-mass third body ($M_{3min.}=0.22{\pm}0.0006M_{\odot}$) is responsible for a periodic variation of about 55 years light time effect. We have determined the orbital parameters of the third component which show a considerable eccentricity $e_3=0.77{\pm}0.07$ together with a longitude of periastron ${\omega}_3=300^{\circ}{\pm}10^{\circ}$.

CONTACT BINARIES IN THE FIELD OF STELLAR CLUSTERS

  • LIANG, LIU;SHENGBANG, QIAN;LIYING, ZHU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.197-200
    • /
    • 2015
  • Several contact binary systems in four stellar clusters or their fields are reported here; NGC7789-V12, EP Cep and ES Cep in NGC188, NGC104-V95 and V710 Mon. Their multiple light curves were analyzed by the 2010 version of the W-D code, and their physical parameters were obtained.

THE BIMA PROJECT: O-C DIAGRAMS OF ECLIPSING BINARY SYSTEMS

  • HAANS, G.K.;RAMADHAN, D.G.;AKHYAR, S.;AZALIAH, R.;SUHERLI, J.;IRAWATI, P.;SAROTSAKULCHAI, T.;ARIFIN, Z.M.;RICHICHI, A.;MALASAN, H.L.;SOONTHORNTHUM, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.205-209
    • /
    • 2015
  • The Eclipsing Binaries Minima (BIMA) Monitoring Project is a CCD-based photometric observational program initiated by Bosscha Observatory - Lembang, Indonesia in June 2012. Since December 2012 the National Astronomical Research Institute of Thailand (NARIT) has joined the BIMA Project as the main partner. This project aims to build an open-database of eclipsing binary minima and to establish the orbital period of each system and its variations. The project is conducted on the basis of multisite monitoring observations of eclipsing binaries with magnitudes less than 19 mag. Differential photometry methods have been applied throughout the observations. Data reduction was performed using IRAF. The observations were carried out in BVRI bands using three different small telescopes situated in Indonesia, Thailand, and Chile. Computer programs have been developed for calculating the time of minima. To date, more than 140 eclipsing binaries have been observed. From them 71 minima have been determined. We present and discuss the O-C diagrams for some eclipsing binary systems.

Evolutionary status of four detached binary stars

  • Kanjanasakul, Chanisa
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • We have presented the evolutionary status of four detached double line spectroscopic eclipsing binaries which are CD Tau, CM Lac, HS Hya and ZZ Boo because the component stars of these binary systems still act as a single star. We determined the absolute dimensions of these binary systems using photometric and spectroscopic solutions from analysis of light curves and radial velocity curves. Using the luminosities, effective temperatures and masses we choose evolutionary tracks of these binary systems. Finally we obtained ages and metallicity of the stars. We found that CM Lac and HS Hya are very young stars and their ages are in range of 0.15-1.05 and 0.22-1.14 Gyrs. For CD Tau and ZZ Boo, they are older than the others and their age in range of 1.95-2.95 and 1.48-1.73 Gyrs.

  • PDF

NEW ORBITAL PARAMETERS AND RADIAL VELOCITY CURVE ANALYSIS OF SPECTROSCOPIC BINARY STARS

  • Ghaderi, Kamal;Pirkhedri, Ali;Rostami, Touba;Khodamoradi, Salem;Fatahi, Hedayat
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • We use a Probabilistic Neural Network (PNN) technique to derive the orbital parameters of spectroscopic binary stars. Using measured radial velocity data of five double-lined spectroscopic binary systems (i.e., EQ Tau, V376 And, V776 Cas, V2377 Oph and EE Cet), we find the corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by other groups via more traditional methods.

CLOSE-IN STELLAR COMPANIONS IN CLOSE BINARY STARS

  • LIAO, FIRST M. WENPING;QIAN, SHENGBANG;ZHU, LIYING;LIU, LIANG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.215-216
    • /
    • 2015
  • Close binary stars are so close that one component has an effect on the evolution of the other. But how do they form and evolve? This is an unsolved problem. One speculation is that the binary is a part of a hierarchical triple and its orbit shrinks due to interaction with the third component. Therefore, searching for and investigating tertiary components, especially close-in ones, in close binary stars are important for understanding their origin, as well as to test theories of star formation and stellar dynamical interaction.

Asymmetric Light curves of Contact and Near-Contact Binaries

  • Rittipruk, Pakakaew;Kang, Young-Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.143.1-143.1
    • /
    • 2012
  • We attempt to investigate the main reason of the asymmetrical light curves of contact and near-contact eclipsing binary base on the hypothesis that cool spot was produced on late type star while hot spot was produced from transferred material from their companion star hitting surface. We select 7 eclipsing binary systems which showed asymmetric light curves and mass transfer. Period variation and mass transfer rate were obtained from O-C diagram. Radial velocity curves and light curves of those 7 eclipsing binary system were adopted from available literature in order to obtain the absolute dimension. For four contact eclipsing binary system (AD Phe, EZ Hya, AG Vir and VW Boo), their component stars belonged to spectral type G to K was fitted by cool spot model. While the other two near-contact systems (RT Scl and V1010 Oph) and one contact system (SV Cen) was fitted by cool spot model. The densities of the materials are adopted from stellar model which calculate by stellar structure code. The calculated spot temperature turns out to agree with the photometric solution but there are no correlate between period variation rate and type of spot.

  • PDF

THE SPECTROSCOPIC CHARATERISTICS OF 23 SYMBIOTICS (23개 공생별의 분광학적 특성)

  • KIM YEOJEONG;HYUNG SIEK;ALLER LAWRENCE H.
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.133-145
    • /
    • 2000
  • Symbiotic stars are known as binary systems with both cool and hot components with enshrounding nebulous gas. The cool component, M-type giant, is presumably loosing its mass into a hot white or main sequence companion star through the inner Lagrangian point. The lines emit from the ionized nebulous region around the hot star while the mass loss or accretion activity is believed to be the main cause of sudden variation of the continuum and line fluxes. We selected 17 symbiotics for which the emission line fluxes were measured from the IUE SWP, LWR data, to find variability of spectrum. We also investigated the periodic variation of emissions or eclipsing effect from the IUE lines. All of our symbiotics show very high electron densities in the emission regions. For other optical symbiotics, the observations had been carried in 1999 with BOAO mid-resolution spectrometer. We classified symbiotics based on their outburst activities, or emission line characteristics, i.e., $OVI{\lambda}6830.\;The\;OVI{\lambda}6830$ emission lines are also found in S-type symbiotics, which have been known as charateristics of D-types.

  • PDF

KIC 6220497: A New Algol-type Eclipsing Binary with δ Sct Pulsations

  • Lee, Jae Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2016
  • We present the physical properties of KIC 6220497 exhibiting multiperiodic pulsations from the Kepler photometry. The light curve synthesis represents that the eclipsing system is a semi-detached Algol with a mass ratio of q=0.243, an orbital inclination of i=77.3 deg, and a temperature difference of ${\Delta}T=3,372K$, in which the detached primary component fills its Roche lobe by ~87% and is about 1.6 times larger than the lobe-filling secondary. To detect reliable pulsation frequencies, we analyzed separately the Kepler light curve at the interval of an orbital period. Multiple frequency analyses of the eclipse-subtracted light residuals reveal 32 frequencies in the range of $0.75-20.22d^{-1}$ with semi-amplitudes between 0.27 and 4.55 mmag. Among these, four frequencies ($f_1$, $f_2$, $f_5$, $f_7$) may be attributed to pulsation modes, while the other frequencies can be harmonic and combination terms. The pulsation constants of 0.16-0.33 d and the period ratios of $P_{pul}/P_{orb}=0.042-0.089$ indicate that the primary component is a ${\delta}$ Sct pulsating star in p modes and, thus, KIC 6220497 is an oscillating eclipsing Algol (oEA) star. The dominant pulsation period of about 0.1174 d is considerably longer than the values given by the empirical relations between the pulsational and orbital periods. The surface gravity of log $g_1=3.78$ is significantly smaller than those of the other oEA stars with similar orbital periods. The pulsation period and the surface gravity of the pulsating primary demonstrate that KIC 6220497 would be the more evolved EB, compared with normal oEA stars.

  • PDF