• Title/Summary/Keyword: eclipsing

Search Result 192, Processing Time 0.028 seconds

New Light Curve Analysis for Large Numbers of Eclipsing Binaries I. Detached and Semi-Detached Binaries

  • Kang, Young-Woon
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2010
  • Several survey observations have produced light curves of more than five thousand eclipsing binaries for last 15 years. Future missions such as the Large Synoptic Survey Telescope (LSST), the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and Gaia are expected to yield hundreds thousands of new variable stars and eclipsing binaries. Current methods require a week to analyze the light curves of an eclipsing binary for its physical and orbital parameters. The current methods of analyzing the light curves will be inadequate to treat the overwhelming influx of new data. Therefore we developed a new method to treat large numbers of light curves of eclipsing binaries. We tested the new method by analyzing more than one hundred light curves of the detached and semi-detached eclipsing binaries discovered in the Small Magellan Cloud and present their fitted light curves with observations.

KMTNet time-series photometry of the doubly eclipsing candidate stars in the LMC

  • Hong, Kyeongsoo;Lee, Jae Woo;Koo, Jae-Rim;Kim, Seung-Lee;Lee, Chung-Uk;Kim, Dong-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.44.2-44.2
    • /
    • 2017
  • Multiple stellar systems composed of triple, double+double or double+triple, etc. are very rare and interesting objects for understanding the star formation and dynamical evolution. However, only six systems have been found to be a doubly eclipsing quadruple, which consists of two eclipsing binaries, and four systems to be a triply eclipsing hierarchical triple. Recently, the 15 doubly eclipsing multiple candidates located in the Large Magellanic Cloud (LMC) have been reported by the OGLE project. In order to examine whether these candidates are real multiple systems with eclipsing features, we performed a high-cadence time-series photometry for the LMC using the KMTNet (Korea Microlensing Telescope Network) 1.6 m telescopes in three site (CTIO, SAAO, and SSO) during 2016-2017. The KMTNet data will help reveal the photometric properties of the multiple-star candidates. In this paper, we present the VI light curves and their preliminarily analyses for 12 of the 15 eclipsing systems in the LMC, based on our KMTNet observations and the OGLE-III survey data from 2001-2009.

  • PDF

ECLIPSING BINARY STARS IN THE MAGELLANIC CLOUDS

  • TOBIN WILLIAM
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.89-91
    • /
    • 1996
  • Within the next few years eclipsing binaries should yield primary distance measurements for the Magellanic Clouds as well as provide tests of theoretical low-metallicity stellar models.

  • PDF

THE MASS AND ANGULAR MOMENTUM RELATION OF ECLIPSING BINARIES (식쌍성의 질량과 궤도 각운동량 관계)

  • Oh, Kyu-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • With a total 2780 eclipsing binary systems in the Catalogue of Approximate Photometric and Absolute Elements of Eclipsing Variable Stars by Svechnikov & Kuznetsova(1990), the empirical relations between the systemic mass and orbital argular momentum have been examined. It is found that, during the its evolution, the total orbital argular momentum of the eclipsing binary sustem is not conserved. It decreases gradually, though not at a constant rate, until the system becomes into contact from initially detached via semi-detached system.

  • PDF

THE BIMA PROJECT: O-C DIAGRAMS OF ECLIPSING BINARY SYSTEMS

  • HAANS, G.K.;RAMADHAN, D.G.;AKHYAR, S.;AZALIAH, R.;SUHERLI, J.;IRAWATI, P.;SAROTSAKULCHAI, T.;ARIFIN, Z.M.;RICHICHI, A.;MALASAN, H.L.;SOONTHORNTHUM, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.205-209
    • /
    • 2015
  • The Eclipsing Binaries Minima (BIMA) Monitoring Project is a CCD-based photometric observational program initiated by Bosscha Observatory - Lembang, Indonesia in June 2012. Since December 2012 the National Astronomical Research Institute of Thailand (NARIT) has joined the BIMA Project as the main partner. This project aims to build an open-database of eclipsing binary minima and to establish the orbital period of each system and its variations. The project is conducted on the basis of multisite monitoring observations of eclipsing binaries with magnitudes less than 19 mag. Differential photometry methods have been applied throughout the observations. Data reduction was performed using IRAF. The observations were carried out in BVRI bands using three different small telescopes situated in Indonesia, Thailand, and Chile. Computer programs have been developed for calculating the time of minima. To date, more than 140 eclipsing binaries have been observed. From them 71 minima have been determined. We present and discuss the O-C diagrams for some eclipsing binary systems.

Light Curve Analyses of the Eclipsing Binaries in the Small Magellan Cloud (소마젤란 은하에 있는 식쌍성의 광도곡선 분석)

  • Kang, Young-Woon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.77-86
    • /
    • 2008
  • Large survey observations such as the EROS, the MACHO and the OGLE projects have discovered a large number of eclipsing binaries in the extra galaxies and published their light curves. The light curves of the eclipsing binaries provide fundamental stellar parameters so that accumulation of the light curves will be very useful for the research of the stellar astronomy. However it requires a lot of time to analyze the light curves. Therefore we developed new method to analyze the large number of light curves in the relatively short time period and found the photometric solution by analyzing the light curves of 20 eclipsing binaries, whose mass ratio can be determined by photometic method, in the Small Magellan Cloud.

PERIOD VARIATION OF EROS ECLIPSING BINARY SYSTEMS IN THE LARGE MAGELLAN CLOUD

  • RITTIPRUK, P.;HONG, K.S.;KANG, Y.W.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.211-214
    • /
    • 2015
  • We investigated the period variation for 79 eclipsing binary systems using 20 years (1990-2009) of EROS, Macho, and OGLE survey observations. We discovered 9 apsidal motions, 8 mass transfers, 5 period increasing and decreasing systems, 12 light-travel-time effects, 5 eccentric systems and 40 other systems showing no period variations. We select 3 representative eclipsing binary systems; EROS 1052 for apsidal motion, EROS 1056 for mass transfer, and EROS 1037 for the light-travel-time effect. We determine the period variation rate (dP/dt), orbital parameters of the 3rd body (e3, ${\omega}_3$, $f(m_3)$, $P_3$, $T_3$), apsidal motion parameters ($d{\omega}/dt$, U, Ps, Pa, e) and apsidal motion period by analyzing the light curves and O-C diagrams.

The BINSYN Program Package

  • Linnell, Albert P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.123-129
    • /
    • 2012
  • The BINSYN program package, recently expanded to calculate synthetic spectra of cataclysmic variables, is being further extended to include synthetic photometry of ordinary binary stars in addition to binary stars with optically thick accretion disks. The package includes a capability for differentials correction optimization of eclipsing binary systems using synthetic photometry.

Asymmetric Light curves of Contact and Near-Contact Binaries

  • Rittipruk, Pakakaew;Kang, Young-Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.143.1-143.1
    • /
    • 2012
  • We attempt to investigate the main reason of the asymmetrical light curves of contact and near-contact eclipsing binary base on the hypothesis that cool spot was produced on late type star while hot spot was produced from transferred material from their companion star hitting surface. We select 7 eclipsing binary systems which showed asymmetric light curves and mass transfer. Period variation and mass transfer rate were obtained from O-C diagram. Radial velocity curves and light curves of those 7 eclipsing binary system were adopted from available literature in order to obtain the absolute dimension. For four contact eclipsing binary system (AD Phe, EZ Hya, AG Vir and VW Boo), their component stars belonged to spectral type G to K was fitted by cool spot model. While the other two near-contact systems (RT Scl and V1010 Oph) and one contact system (SV Cen) was fitted by cool spot model. The densities of the materials are adopted from stellar model which calculate by stellar structure code. The calculated spot temperature turns out to agree with the photometric solution but there are no correlate between period variation rate and type of spot.

  • PDF

Fundamental parameters of the eclipsing binaries in the Large Magellanic cloud

  • Hong, Kyeong Soo;Kang, Young Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.141.2-141.2
    • /
    • 2012
  • We present photometric solutions of the 26,212 eclipsing binaries discovered in the LMC by Graczyk et al. (2011). They published that 70 percent of a total are detached systems. Another 25 and 5 percent are semi-detached and contact binaries, respectively. We discovered that 21 percent of 26,121 eclipsing binary stars are eccentric orbit systems. The binary star distribution in the LMC is different from those of the Galactic center direction (Bade window). It is very interesting that there are only 5 of 357 (2 percent) stars have eccentric orbit in the Galactic Center (Kang 2011). We selected the light curve of 18,274 detached systems. Then we estimated the fundamental parameters on the basis of their photometric solutions and the semi-major-axis (a) assuming the distance modulus to the LMC~18.50. We compared the estimated fundamental parameters with an empirical mass-luminosity relation and consistency between mass-radius relation base on stellar evolution model in the low metallicity (Z=0.008) by Bertelli et al. (2009). This method allows for independent determine of the fundamental parameters of the eclipsing binaries in the LMC without the radial velocity curves.

  • PDF