• Title/Summary/Keyword: echelle spectrograph

Search Result 85, Processing Time 0.023 seconds

Planetary companions orbiting K giant HD 208527 and M giant HD 220074

  • Lee, Byeong-Cheol;Han, Inwoo;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.107.2-107.2
    • /
    • 2012
  • The purpose of the present study is to search for and study the origin of planetary companion by a precise radial velocity (RV) survey for K dwarfs. The high-resolution spectroscopy of the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO) is used from September 2008 to June 2012. We report the detection of two new exoplanets in orbit around HD 208527, and HD 220074 with exhibiting a periodic variation of 875.5 and 672.1 days. The examinations of surface inhomogeneous are no related to the RV variations and Keplerian motion is the most likely explanation, which suggests that the RV variations arise from an orbital motion under the influence of planetary companion. We obtain the minimum masses for the exoplanets of 11.5 and 11.1 MJup with an orbital semi-major axis of 2.3 and 1.6 AU and an eccentricity of 0.08 and 0.14, respectively. From the literatures and our estimations of stellar parameters, the luminosity class of HD 208527 is changed K dwarf to K giant and the spectral type of HD 220074 is confirmed M giant rather than K dwarf. HD 220074 is the first M giant star harboring a planetary companion.

  • PDF

HIGH RESOLUTION SPECTROSCOPIC STUDY OF SYMBIOTIC STAR AG DRACONIS

  • KIM, SOO HYUN;YOON, TAE SEOG;OH, HYUNG-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.13-31
    • /
    • 2022
  • We observed the symbiotic star AG Dra for a total of 61 nights between April 2004 and December 2021 using the 1.8-m telescope and the high-resolution Echelle spectrograph BOES at the Bohyunsan Optical Astronomy Observatory and obtained 355 frames of spectroscopic data to investigate the variations in its spectral lines. Overnight short-term and long-term changes in prominent emission lines are examined. No short-term changes are found in the line profiles. However, the peak intensity of the Hα emission line exhibits very small variation. In the long-term period, many emission lines including He I λ5875, λ6678, λ7065 and Fe II λ5018 are found to vary reflecting the symbiotic outburst activities. It is noted that He II λ4686 and Raman-scattered O VI λ6830, λ7088 are exceptions, where no significant variations are discernible. One of the noticeable lines is the λ5018 line. Its appearance and disappearance pattern are different from other emission lines, and the line is found to appear in outburst states. The Hα and Hβ lines remain very similar in our spectroscopic monitoring campaign.

Characterization of the performance of the next-generation controller for the BOES CCD

  • Park, Su-Hwan;Yu, Young Sam;Sung, Hyun-Il;Park, Yoon-Ho;Lee, Sang-Min;Bang, Seung-Cheol;Chun, Moo-Young;Seong, Hyeon-Cheol;Kim, Minjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.76.2-76.2
    • /
    • 2021
  • We present the characterization of the performance of the next-generation controller (SDSU Gen III) for BOAO Echelle Spectrograph CCD (BOES CCD) at the Bohyunsan Optical Astronomy Observatory. The current controller (SDSU Gen II) of the BOES CCD will be upgraded to SDSU Gen III to provide a more stabilized operation. To assess the performance of the new controller (e.g., conversion gain, full well capacity, S/N), we obtain various types of calibration images (e.g., bias, flat, science images of standard stars). Based on those datasets, we find that the overall performance of the new controller is somewhat comparable to that of the old controller if the slow mode is adopted for the readout. This may demonstrate that the new controller can be successfully substituted for the old controller without a substantial loss of performance. However, further analysis with a large dataset obtained in various observational conditions is necessary to confirm our results.

  • PDF

A Search for Exoplanets around Northern Circumpolar Stars. VII. Detection of Planetary Companion Orbiting the Largest Host Star HD 18438

  • Byeong-Cheol Lee;Jae-Rim Koo;Gwanghui Jeong;Myeong-Gu Park;Inwoo Han;Yeon-Ho Choi
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • We have been conducting a exoplanet search survey using Bohyunsan Observatory Echelle Spectrograph (BOES) for the last 18 years. We present the detection of exoplanet candidate in orbit around HD 18438 from high-precision radial velocity (RV) mesurements. The target was already reported in 2018 (Bang et al. 2018). They conclude that the RV variations with a period of 719 days are likely to be caused by the pulsations because the Lomb-Scargle periodogram of HIPPARCOS photometric and Hα EW variations for HD 18438 show peaks with periods close to that of RV variations and there were no correlations between bisectors and RV measurements. However, the data were not sufficient to reach a firm conclusion. We obtained more RV data for four years. The longer time baseline yields a more accurate determination with a revised period of 803 ± 5 days and the planetary origin of RV variations with a minimum planetary companion mass of 21 ± 1 MJup. Our current estimate of the stellar parameters for HD 18438 makes it currently the largest star with a planetary companion.

EXPANSION VELOCITY INVESTIGATION OF THE ELLIPTICAL PLANETARY NEBULA NGC 6803

  • Choi, Youn-Su;Lee, Seong-Jae;Hyung, Siek
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.6
    • /
    • pp.163-172
    • /
    • 2008
  • Using the spectral data in the 3700 to $10050{\AA}$ wavelength range secured with the Hamilton Echelle Spectrograph (HES) at the Lick observatory, we have investigated the expansion velocities and the physical conditions of the elliptical planetary nebula NGC 6803. Various forbidden and permitted lines, e.g. HI, HeI, HeII, [OIII], [NII], [ArIII], and [SII], indicate complicated but systematic physical conditions variation: electron temperatures $T_{\varepsilon}\;{\sim}\;9000$ - 11000 K and electron number densities $N_{\varepsilon}\;{\sim}\;2000$ - $9000\;cm^{-3}$. The line profile analysis of these ions also indicates the systematic change or the acceleration of the expansion velocities in the range of 10 - $22\;km\;s^{-1}$. We show that the velocity gradient and physical condition found in various ions are closely related to the prolate ellipsoidal structure of NGC 6803. The expansion velocity and the ionic abundance of $O^{2+}$ were derived based on the OII and [OIII] lines. In spite of the discrepancy of ionic abundances derived by the two cases and their line profiles, the expansion velocities of them agree well. We find that the ratios of the red to blue line component of the HeII & OII lines are different from those of the [OIII] or other forbidden lines that indicates a possible involvement of emission of HeII & OII lines. This subtle difference and the different physical condition of the lines are likely to be caused by the elongated geometry and the latitude dependence of the emission zone.

Critical Design Status of the G-CLEF Flexure Control Camera

  • Oh, Jae Sok;Park, Chan;Kim, Kang-Min;Chun, Moo-Young;Yu, Young Sam;Lee, Sungho;Kim, Jihun;Nah, Jakyoung;Szentgyorgyi, Andrew;Podgorski, William;Evans, Ian;Mueller, Mark;Uomoto, Alan;Crane, Jeffrey;Hare, Tyson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2017
  • The GMT-Consortium Large Earth Finder (G-CLEF) is the very first light instrument of the Giant Magellan Telescope (GMT). The instrument is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement, and has been being developed through the international consortium consisted of five astronomical institutes including Smithsonian Astrophysical Observatory (SAO), Observatories of the Carnegie Institution of Washington (OCIW), and Korea Astronomy and Space Science Institute (KASI). The Preliminary Design Review (PDR) for the G-CLEF was held in Cambridge, Massachusetts in April 2015. It is scheduled to have Critical Design Review (CDR) in March 2018. Flexure Control Camera (FCC) is one of the KASI's major contributions to the G-CLEF project. In this presentation, we describe the current critical design status, and structural and thermo-elastic analyses results on the G-CLEF FCC.

  • PDF

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

  • Heo, Jeong-Eun;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.

DYNAMICAL CHARACTERISTICS OF SUNSPOT CHROMOSPHERES II. ANALYSIS OF CA II H, K AND ${\lambda}8498$ LINES OF A SUNSPOT (SPO 5007) FOR OSCILLATORY MOTIONS

  • Yoon, Tae-Sam;Yun, Hong-Sik;Kim, Jeong-Hoon
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.245-253
    • /
    • 1995
  • We have analyzed the time series of Ca II H,K and ${\lambda}8498$ line profiles taken for a sunspot (SPO 5007) with the Echelle spectrograph attached to Vacuum Tower Telescope at Sacramento Peak Solar Observatory. Each set of spectra was taken simultaneously for 20 minutes at a time interval of 30 seconds. A total of 40 photographic films for each line was scanned by a PDS at Korea Astronomy Observatory. The central peak intensity of Ca II H ($I_{max}$), the intensity measured at ${\Delta}{\lambda}=-0.1{\AA}$ from the line center of ${\lambda}8498(I_{{\lambda}8489})$, the radial velocity ($V_r$) and the Doppler width (${\Delta}{\lambda}_D$) estimated from Ca II H have been measured to study the dynamical behaviors of the sunspot chromosphere. Fourier analysis has been carried out for these measured quantities. Our main results are as follows: (1) We have confirmed the 3-minute oscillation being dominant throughout the umbra. The period of oscillations jumps from 180 sec in the umbra to 500 to 1000 sec in the penumbra. (2) The nonlinear character of the umbral oscillation is noted from the observed sawtooth shaped radial velocity fluctuations with amplitudes reaching up to $5{\sim}6\;km/sec$. (3) The spatial distribution of the maximum powers shows that the power of oscillations is stronger in the umbra than in the penumbra. (4) The spatial distributions of the time averaged < $I_{max}$ > and < $V_r$ > across the spot are found to be nearly axially symmetric, implying that the physical quantities derived from the line profiles of Ca II H and ${\lambda}8498$ are inherently associated with the geometry of the magnetic field distribution of the spot. (5) The central peaks of the CaII H emission core lead the upward motions of the umbral atmosphere by $90^{\circ}$, while no phase delay is found in intensities between $I_{max}$ and $I_{{\lambda}8498}$, suggesting that the umbral oscillation is of standing waves.

  • PDF

Absolute Dimensions And Period Changes Of The Semi-Detached Algol Type Binary XZ Canis Minoris

  • Kim, Hye-Young;Kim, Chun-Hwey;Hong, Kyeongsoo;Jeong, Min-Ji;Park, Jang-Ho;Song, Mi-Hwa;Lee, Jae Woo;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.64.1-64.1
    • /
    • 2019
  • The first high-resolution spectroscopic and new multiband photometric observations of the semi-detached Algol type binary XZ CMi were performed at the Bohyunsan Optical Astronomy Observatory (BOAO) and the Sobaeksan Optical Astronomy Observatory (SOAO), respectively. A total of 34 spectra were obtained using the 1.8 m reflector of the BOAO equipped with the Bohyunsan Optical Echelle Spectrograph to construct the radial velocity (RV) curves of the eclipsing pair. New BVRI photometric light curves were also covered by using the SOAO 61cm reflector and a CCD camera. A detailed analysis of all eclipse timings shows that the orbital period of XZ CMi has varied in an upward parabolic variation superposed on a sinusoidal oscillation with a period of 38.0 yr and a semi-amplitude of 0.0071 days. From the spectral analysis, the effective temperature and the projected rotational velocity of the primary component were determined to be Teff,1 = 7387±161 K and v1sini = 122±6 km s-1, respectively. Our simultaneous synthesis of the double-lined RV and BVRI light curves gives the reliable system parameters of XZ CMi with a mass ratio (q) of 0.314, an orbital inclination (i) of 81.9 deg and a large temperature difference (∆T) of 2481 K. The individual masses and radii of both components are M1 = 1.91±0.08M, M2 = 0.60±0.02M, R1 = 1.60±0.02R, R2 = 1.13±0.02R, respectively. Although the primary component is located inside the δ Sct and γ Dor instability strips, no evidence of pulsation in the system was detected. The possible evolutionary status of XZ CMi is discussed.

  • PDF

Is there a stellar companion in hybrid star HD 81817?

  • Bang, Tae-Yang;Lee, Byeong-Cheol;Perdelwitz, V.;Jeong, Gwang-Hui;Han, Inwoo;Oh, Hyeong-il;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.64.2-64.2
    • /
    • 2019
  • HD 81817 is known as a hybrid star. Hybrid stars have both cool stellar wind properties and UV or even X-ray emission features of highly ionized atoms in their spectra. A white dwarf companion has been suggested as the source of UV or X-ray features. HD 81817 has been observed since 2004 as a part of our radial velocity (RV) survey program to search for exoplanets around K giant stars using the Bohyunsan Observatory Echelle Spectrograph (BOES) at the 1.8 m telescope of Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. We obtained 84 RV measurements between 2004 and 2018 for HD 81817 and found two periodic RV variations. The obtained amplitudes of RV periods are around 200 m/s, which are significantly lower than that expected from a white dwarf companion. Furthermore, our re-analysis of the IUE spectra used by Reimers (1984) shows that the excess in UV emission can easily be explained by a pseudo-continuum of unresolved emission lines originating in the extended chromosphere of the star. We thus conclude that there are no companions of stellar mass to HD 81817. Meanwhile, we analyzed two periodicities in RV measurements and conclude that the period of 627.9 days is caused by intrinsic stellar activities based on H alpha equivalent width (EW) variations of a similar period. On the other hand, the period of 1047.8 days is likely to be caused by substellar companion which has a minimum mass of 27.6 MJUP, a semi-major axis of 3.3 AU, and an eccentricity of 0.17 assuming the stellar mass of 4.3 M for HD 81817. The inferred mass puts HD 81817 b in the brown dwarf desert.

  • PDF