• Title/Summary/Keyword: eccentric load

Search Result 228, Processing Time 0.028 seconds

Connection Resistance of Mechanical Joint using Connection plate for Improvement of Connectivity between PHC piles (PHC파일간 연결 시공성 개선 이음판형 기계적 연결부의 연결저항)

  • Ahn, Jin-Hee;Moon, Hong-duk;Ha, Min-Gyun;Cho, Kwang-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.25-32
    • /
    • 2019
  • Welded joints and mechanical joints using bolt connection have been used as a pile-to-pile connecting method for PHC piles. These PHC pile joint methods may have difficulty in securing connecting quality and connecting performance in PHC pile joining process. Therefore, this study proposes a non-welded connection plate type mechanical PHC pile joint to improve the disadvantages of existing PHC pile connection methods and to secure the connection performance of PHC pile joint. Its connection performance was evaluated from nonlinear FE analysis and loading tests for actual PHC piles with suggested pile joints. From nonlinear FE analysis for the proposed PHC pile joint, it was evaluated to have sufficient connection performance under flexural, compressive, tensile, shear, and eccentric compressive load condition. PHC piles connected by the suggested connection plate type mechanical PHC pile joint show that they show stable linear behaviors for the crack moment and the flexural moment level of the PHC pile. Therefore, the proposed a non-welded connection plate type mechanical PHC pile joint can secure sufficient connection performance in PHC pile.

Strength Parameters and Shear Behaviors of North-Cheju Basalt Rubble Using Large-scale Triaxial Test (대형삼축압축시험을 이용한 북제주현무암 사석재의 강도정수 및 전단거동)

  • 정철민;김종수;채영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • According to the Korean Design Code for port and harbor facilities, bearing capacity of rubble mound under eccentric and inclined load is calculated by the simplified Bishop method, and strength parameters are recommended to be c=0.2kg/$cm^2$ and \phi=35^P\circ}$ fur standard rubble if the compressive strength of parent rock is greater than 300kg/$cm^2$, according to research results by Junichi Mizukami(1991). But this facts have never been verified in Korea because there was no large-scale triaxial test apparatus until 2000 in Korea. For the first time in Korea, the large-scale triaxial test(sample diameter 30cm ; height 60cm) on the rubble originated from porous basalt rock in North-Cheju was accomplished. Then strength parameters for basalt rubble produced in North-Cheju are recommended to be c:0.3kg/$cm^2\; and \phi=36^{\circ}$ if the compressive strength of parent rock is greater than 400kg/$cm^2$. And the shear behavior characteristics of rubble, represented as particle breakage and dilatancy, are investigated.

Lateral Behavior of Group Pile in Sand (사질토 지반에서 군말뚝의 수평거동에 관한 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.117-129
    • /
    • 2000
  • This paper discusses the lateral behavior of group pile in homogeneous and non- homogeneous (two layered) soil. In the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, constraint condition of pile tip, eccentric load and ground condition. The group efficiency and lateral deflection induced in active piles were found to be highly dependent on the spacing-to-diameter ratio of pile, number of pile. Lateral bearing capacities in the group piles of fixed tip, in the case of 6D spacing and $3\times3$ array, were 40-100% higher than those in the group pile of free tip. Based on the results obtained, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8% and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. However, in the case of dense sand, it can be estimated that a spacing-to-diameter of 8.0 seems to be large enough to eliminate the group effect. In this study the group efficiency is illustrated in experimental function with spacing-to-diameter, S/D, relative density and number of pile. The distribution of shear force in lead row piles, in the case of 3$\times$3 array group pile, was 41.6-52.4% for 3D spacing and 34-40% for 6D spacing, respectively. The shadowing effect for the parallel direction of lateral loading appears to be more significant than the one for the perpendicular direction of lateral loading.

  • PDF

An Experimental Study About a Net-Type External Prestress Strengthening Method for Slab Bridges (네트형 외부 긴장재에 의한 슬래브교 보강 실험)

  • Han, Man Yop;Kang, Tae Heon;Choi, Sok Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.136-149
    • /
    • 2011
  • Large portion of the domestic bridges are slab bridges reflecting the geographical characteristic of the country, where exists lots of inclines and small winding brooks. Many of the slab bridges are damaged and superannuated as they become obsolete. Deterioration is accelerated when the traffic density becomes large and heavy vehicles pass frequently. A strengthening method for deteriorated slab bridges was studied in this work. The examined net-type strengthening method uses both longitudinal and transverse prestressing for strengthening. In this way, the deflection at the center of the slab can be better controlled, and consequently, the slab is more efficiently strengthened. Three slab specimens were fabricated for the experimental test and subjected to three different loading conditions, and the load bearing capacities and deflections of slabs were examined. Flexural stiffness of slabs increased by 30.7~107.3%, and deflection of slabs decreased by 27.6~52.2% after net-type strengthening. The net-type prestressing is efficient to the strengthening for the center of a slab, and its efficiency is also valid under eccentric loadings. Since extra prestress forces can be added in the future, if necessary, the net-type strengthening system is advantagous for the maintenance and repair of slab bridges.

Partial Safety Factors for Geotechnical Bearing Capacity of Port Structures (항만구조물 지반지지력 산정을 위한 부분안전계수 결정)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon;Kim, Baeck-Oon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • When eccentric or inclined load acts on foundation of the port & harbor structures, partial safety factors of bearing capacity limit state were estimated using reliability analysis. Current Korean technical standards of port and harbor structures recommend to estimate the geotechnical bearing capacity using the simplified Bishop method. In practice, however, simple method of comparing ground reaction resistance with allowable bearing capacity has been mostly used by design engineers. While the simple method gives just one number fixed but somewhat convenient, it could not consider the uncertainty of soil properties depending on site by site. Thus, in this paper, partial safety factors for each design variable were determined so that designers do perform reliability-based level 1 design for bearing capacity limit state. For these, reliability index and their sensitivities were gained throughout the first order reliability method(FORM), and the variability of the random variables was also considered. In order to verify partial safety factors determined here, a comparison with foreign design codes was carried out and were found to be reasonable in practical design.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

Analysis of stress distribution of tooth restored with metal-ceramic crown covering abfraction lesion according to its finish line location under occlusal load (금속도재관으로 수복된 Abfraction lesion이 있는 치아에 가해지는 교합력의 응력 분포 분석)

  • Kim, Jee-Hwan;Yoon, Chol-Wook;Kim, Taehyeon;Kim, Han-Sung;Woo, Dae-Gon;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • Purpose: When the full veneer crown was treated in the tooth with abfraction lesion due to various causes, the prognosis of it may be compromised according to the location of the finish line, but there is few study about the location of its buccal finish line. The purpose of this study was to investigate the effect of location of the finish line of the full veneer crown on stress distribution of the tooth with abfraction lesion. Materials and methods: The two dimensional finite element model was developed to express tooth, surrounding tissue and full veneer crown. The stress distribution under eccentric 144 N occlusal load was analyzed using finite element analysis. The location of finish line was set just at the lower border of the lesion (Group 0), 1 mm (Group 1) and 2 mm (Group 2) below the lower border of the lesion. Results: In the Group 0, von Mises stress was concentrated at the finish line and the apex of the lesion. Also, the stress at the bucal finish line propagated to the lingual side. In the Group 1 and Group 2, stress distribution was similar each other. Stress was concentrated at the apex of lesion, but the stress at the buccal finish line did not propagate to the lingual side. That implied decrease of the possibility of horizontal crown fracture. Conclusion: Full veneer crown alleviated the stress concentrated at the apex of the abfraction lesion, when the finish line of full veneer crown was set below the lower border of abfraction lesion.

A Study on the Restoration of the Wangheungsa Temple's Wooden Pagoda (왕흥사 목탑의 복원 연구)

  • Kim, Kyeong-Pyo;Sung, Sang-Mo
    • Journal of architectural history
    • /
    • v.19 no.3
    • /
    • pp.7-29
    • /
    • 2010
  • The form of the Wangheungsa Temple's wooden pagoda site is that of the traditional form of the wooden pagodas constructed during the Baekjae Period. Likewise, it is an important ruin for conducting research on the form and type of the wooden pagodas constructed during the Baekjae Period. In particular, the method used for the installation of the central pillar's cornerstone is a new technique. The purpose of this research is to restore the ruin of the Wangheungsa Temple's wooden pagoda of the Baekjae Period that remains at the Wangheungsa Temple's wooden pagoda site. Until now, research conducted on the wooden pagoda took place mostly centered on the Hwangryongsa Temple's wooden pagoda. Meanwhile, the reality concerning Baekjae's wooden pagoda is one in which there were not many parallel cases pertain to the design for restoration. This research paper wants to conduct academic examination of the Wangheungsa Temple's wooden pagoda to organize the intention of design and design process in a simple manner. This research included review of the Baekjae Period's wooden pagoda related ruins and the review of the existing wooden pagoda ruin to analyze the wooden pagoda construction technique of the era. Then, current status of the Wangheungsa Temple's wooden pagoda site is identified to define the characteristics of the wooden pagoda, and to set up the layout format and the measure to estimate the size of the wooden pagoda in order to design each part. Ultimately, techniques and formats used for the restoration of the wooden pagoda were aligned with the wooden pagoda of the Baekjae Period. Basically, conditions that can be traced from the current status of the Wangheungsa Temple site excavation using the primary standards as the standard. Wangheungsa Temple's wooden pagoda was designed into the wooden pagoda of the Baekjae's prosperity phase. The plane was formed into $3{\times}3$ compartments to design into three tier pagoda. The height was decided by factoring in the distance between the East-West corridors, size of the compartment in the middle, and the view that is visible from above the terrace when entering into the waterway. Basically, the origin of the wooden structure format is based on the Goguryeo style, but also the linkage with China's southern regional styles and Japan's ancient wooden pagoda methods was factored in. As for the format of the central pillar, it looks as if the column that was erected after digging the ground was used when setting up the columns in the beginning. During the actual construction work of the wooden pagoda, central pillar looks as if it was erected by setting up the cornerstone on the ground. The reason that the reclaimed part of pillar that use the underground central cornerstone as the support was not utilized, was because the Eccentric Load of the central pillar's cornerstone was factored in the state of the layers of soil piled up one layer at a time that is repeated with the yellow clay and sandy clay and the yellow clay that were formed separately with the $80cm{\times}80cm$ angle at the upper part of the central pillar's cornerstone was factored in as well. Thus, it was presumed that the central pillar was erected in the actual design using the ground style format. It is possible to presume the cases in which the reclaimed part of pillar were used when constructed for the first time, but in which central pillar was installed later on, after the supplementary materials of the underground column is corroded. In this case, however, technique in which soil is piled up one layer at a time to lay down the foundation of a building structure cannot be the method used in that period, and the reclamation cannot fill up using the $80cm{\times}80cm$ angle. Thus, it was presumed that the layers of soil for building structure's foundation was solidified properly on top of the central pillar's cornerstone when the first wooden pagoda construction work was taking place, and that the ground style central pillar was erected on its upper part by placing the cornerstone once again. Wangheungsa Temple's wooden pagoda is significant from the structure development aspect of the Korean wooden pagodas along with the Hwangryongsa Temple's wooden pagoda. Wangheungsa Temple's wooden pagoda construction technique which was developed during the prosperity phase of the Baekjae Period is presumed to have served as a role model for the construction of the Iksan Mireuksa Temple's wooden pagoda and Hwangryongsa Temple's wooden pagoda. With the plan to complement the work further by excavating more, the basic wooden pagoda model was set up for this research. Wangheungsa Temple's wooden pagoda was constructed as at the Baekjae Kingdom wide initiative, and it was the starting point for the construction of superb pagoda using state of the art construction techniques of the era during the Baekjae's prosperous years, amidst the utmost interest of all the Baekjae populace. Starting out from its inherent nature of enshrining Sakyamuni's ashes, it served as the model that represented the unity of all the Baekjae populace and the spirit of the Baekjae people. It interpreted these in the most mature manner on the Korean peninsula at the time.