• Title/Summary/Keyword: east wind

Search Result 523, Processing Time 0.026 seconds

Relations between Wave and Wind at 5 stations around the Korean Peninsula (한반도 주변 해역 5개 정점에서 파랑과 바람의 관계)

  • Ko Hee-Jong;Pang Ig-chan;Kim Tae-hee
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.240-252
    • /
    • 2005
  • The relationships between wave and wind around the Korean Peninsula have been analyzed with the data from the buoys moored at five stations (Dugjug-do, Chilbal-do, Geomoon -do, Geoje-do, Donghae) by Korea Meteorological Administration. Generally, the relationship between wave and wind is the highest at the stations in the West Sea and the lowest at the stations in the South Sea, and the middle at the station in the East Sea. The characteristics shown at each station are as follows. Highest wave is developed at Chilbal-do with strong northwesterly wind in winter because the sea is opened in the wind direction and wave is amplified by shoaling effect. At Chilbal-do, wave directions coincide with wind directions relatively well. On the other hand, waves are not fully developed at Dugjug-do in winter due to limited fetch since the sea is blocked by Hwanghae-do in the northwest direction. The limitation in fetch is more serious at the stations in the South Sea. In the South Sea, the direction of dominant northerly wind is blocked by land so that wave heights are small even with very strong northerly wind. In the South Sea, whatever wind direction is, waves dominantly come in the direction from the East China Sea, which are from the south at Geomoon-do and the southwest at Geoje-do. At these directions, waves are coming even with weak wind. At the station in the East Sea, waves are highly developed due to vast area, but not so high as in Chilbal-do because wind and wave directions do not coincide in many cases. As shown, wind direction is important in the wave development as well as wind speed. The reason is that the fetch is determined by wind direction. In the case of long-lasted wind with fixed direction at Chilbal-do and Dugjug-do, wave directions are well coincident with wind directions and wave heights increase with response time, which is the duration between the highest wind and wave. However, in the case of disagreement between wind and wave directions at the station in the East Sea, wave heights do not increase as highly as at Chilbal-do and Dugjug-do in spite of strong wind and longer response time. The results show us that waves are highly developed with strong wind, long fetch, and long duration, and also show that wave development ratios are different at different stations due to environmental factors such as the direction towards sea or land, bottom topography, and the scales of adjacent seas.

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF

A numerical study on the dispersion of the Yangtze River water in the Yellow and East China Seas

  • Park, Tea-Wook;Oh, Im-Sang
    • Journal of the korean society of oceanography
    • /
    • v.39 no.2
    • /
    • pp.119-135
    • /
    • 2004
  • A three-dimensional numerical model using POM (the Princeton Ocean Model) is established in order to understand the dispersion processes of the Yangtze River water in the Yellow and East China Seas. The circulation experiments for the seas are conducted first, and then on the bases of the results the dispersion experiments for the river water are executed. For the experiments, we focus on the tide effects and wind effects on the processes. Four cases of systematic experiments are conducted. They comprise the followings: a reference case with no tide and no wind, of tide only, of wind only, and of both tide and wind. Throughout this study, monthly mean values are used for the Kuroshio Current input in the southern boundary of the model domain, for the transport through the Korea Strait, for the river discharge, for the sea surface wind, and for the heat exchange rate across the air-sea interface. From the experiments, we obtained the following results. The circulation of the seas in winter is dependent on the very strong monsoon wind as several previous studies reported. The wintertime dispersion of the Yangtze River water follows the circulation pattern flowing southward along the east coast of China due to the strong monsoon wind. Some observed salinity distributions support these calculation results. In summertime, generally, low-salinity water from the river tends to spread southward and eastward as a result of energetic vertical mixing processes due to the strong tidal current, and to spread more eastward due to the southerly wind. The tide effect for the circulation and dispersion of the river water near the river mouth is a dominant factor, but the southerly wind is still also a considerable factor. Due to both effects, two major flow directions appear near the river mouth. One of them is a northern branch flow in the northeast area of the river mouth moving eastward mainly due to the weakened southerly wind. The other is a southern branch flow directed toward the southeastern area off the river mouth mostly caused by tide and wind effects. In this case, however, the tide effect is more dominant than the wind effect. The distribution of the low salinity water follows the circulation pattern fairly well.

A Study on the Building of Tuna Farming in Floating Offshore Wind Power Generation Field at East Sea (동해 부유식 해상풍력발전단지 내 참다랑어 양식장 조성에 관한 연구)

  • Choi, Gun Hwan;Kim, Mi Jeong;Jang, Ki Ho;Kim, Hyo Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.179-186
    • /
    • 2021
  • We need measures that can come up with alternative about fishery living zone and enhance local acceptance for responding to the increase in the proportion of renewable energy production and construction of 12GW Offshore wind power according to Korea's Renewable Energy 3020 initiative and Korean-version New Deal. In this study, We suggest that differentiation plans of co-location model in connection with offshore wind power generation suitable for the East Sea. The East Sea is an optimal site for building of a floating offshore wind power generation(FOWPG) field. It is expected that economic effects like energy production, aquatic resource development and tourism industrialization by farming bluefin tuna which is high valued fish and suitable for offshore aquaculture on public waters in FOWPG field. And we can confirm that budget reduction, smart management by sharing operation management technology and increase in fishermen income.

Analysis of Wind Sector Division for Pohang Area - Part I : Coarse Division of Wind Sector for Pohang Area Using Meteorological Observation Data - (포항지역에 대한 바람권역 분석 -Part I : 기상관측자료를 토대로 분석한 성긴 바람권역 분석-)

  • Jung, Jong-Hyeon;Leem, Heon-Ho;Leem, Hwa-Woon;Chang, Hyuk-Sang;Shon, Byung-Hyun
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.385-396
    • /
    • 2008
  • The air quality data is important for understanding and analyzing a surrounding influence. In that light, it is positively necessary for a propriety assessment to determine a location of the air quality monitoring sites. In this study, the climate analysis about temperature and wind, using the meteorological data in the Pohang, is conducted to do that. In the next stage, we distinguished the wind by east-west or north-south component, which has less correlation than temperature, analyzed and divided the wind sector. As the result, the wind circumstance of the Pohang is divided into major 5 wind sector; that is the urban area, the northeast coastal area, the east ocean and the west mountainous area. We think that an analysis on detailed wind sector by utilizing the numerical simulation is needed.

Wind Attribute Time Series Modeling & Forecasting in IRAN

  • Ghorbani, Fahimeh;Raissi, Sadigh;Rafei, Meysam
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.3 no.3
    • /
    • pp.14-26
    • /
    • 2015
  • A wind speed forecast is a crucial and sophisticated task in a wind farm for planning turbines and corresponds to an estimate of the expected production of one or more wind turbines in the near future. By production is often meant available power for wind farm considered (with units KW or MW depending on both the wind speed and direction. Such forecasts can also be expressed in terms of energy, by integrating power production over each time interval. In this study, we technically focused on mathematical modeling of wind speed and direction forecast based on locally data set gathered from Aghdasiyeh station in Tehran. The methodology is set on using most common techniques derived from literature review. Hence we applied the most sophisticated forecasting methods to embed seasonality, trend, and irregular pattern for wind speed as an angular variables. Through this research, we carried out the most common techniques such as the Box and Jenkins family, VARMA, the component method, the Weibull function and the Fourier series. Finally, the best fit for each forecasting method validated statistically based on white noise properties and the final comparisons using residual standard errors and mean absolute deviation from real data.

A Review of Ocean Circulation of the East/Japan Sea (한국 동해 해수순환의 개략적 고찰)

  • 김종규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.103-107
    • /
    • 2001
  • The major studies of an ocean circulation of the East/Japan Sea related to evaluate the feasibility and utilization of deep ocean water are reviewed. The major feature of surface current system of the East/Japan Sea is an inflow of the Tsushima Warm Current through the Korea/Tsushima Strait and the outflow through the Tsugaru and Soya Straits. The Tsushima Warm Current has been known to split into two or three branches in the southern region of the East/Japan Sea. In the cold water region of the East/Japan Sea, the North Korean Cold Current turns to the east near 39$^{\circ}$N after meeting the East Korean Warm Current, then flows eastward. The degree of penetration depends on the strength of the positive wind stress curl, according to the ventilation theory. Various current meter moorings indicate strong and oscillatory deep currents in various parts of the basin. According to some numerical experiments, these currents may be induced by pressure-topography or eddy-topography interaction. However, more investigations are needed to explain clearly the presence of these strong bottom currents. This study concludes the importance of topographical coupling, isopycnal outcropping, different wind forcing and the branching of the Tsushima Warm Current on the circulation of the East/Japan Sea.

  • PDF

Spatio-temporal Distributions of the Wind Stress and the Thermocline in the East Sea of Korea

  • NA Jung-Yul;HAN Sang-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.341-350
    • /
    • 1988
  • The wind stress distribution over the East Sea of Korea was obtained from the shipboard observations of the Fisheries Research and Development Agency along the serial observation lines. These monthly and annual mean wind stress distributions were put into the simplified interface model which describes the latitudinal variations of the upper-layer thickness as function of the curl of the wind stress. The observed variations of the surface, zonally averaged winds indeed caused the upper-layer flow convergent and divergent at the latitudes that produced a tone of thick upper-layer or a deep permanent thermocline and the shallower depth with divergence. Thus, the wind field contributes positively to maintain the almost time-independent distribution of the interface of 'saddle like' feature in north-south direction over the study area.

  • PDF

An Analysis of Observed and Simulated Wind in the Snowfall Event in Yeongdong Region on 8 February 2020 (2020년 2월 8일 영동지역 강설 사례 시 관측과 수치모의 된 바람 분석)

  • Kim, Hae-Min;Nam, Hyoung-Gu;Kim, Baek-Jo;Jee, Joon-Bum
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.433-443
    • /
    • 2021
  • The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.