• Title/Summary/Keyword: earthquake wave

Search Result 501, Processing Time 0.028 seconds

The study on advertisement of dental devices & instrument during Japanese colonized period (광고를 통해 본 일제강점기 치과 장비 및 기구 광고에 관한 연구)

  • Shin, Jai-Eui
    • The Journal of the Korean dental association
    • /
    • v.48 no.12
    • /
    • pp.893-918
    • /
    • 2010
  • This article is purposed of reviewing the development history of Japanese dental devices and instrument, and their related advertisement activities during the Japanese colonized period in Korea in early 20th century. Japanese dental devices and instrument were redesigned to accommodate their ergonomic shape above the simple imitation, and it implies the excessive desires brought them frustrations. The tragic earthquake on Sep. l, 1923, medical insurance law enforcement on Jan. 1, 1927, celebration of "Cavity prevention Day" started on Jun. 4, 1928, and the attack of Manchuria and China by Japan after 1931, all of these historical incidents become the preliminary requirement for the development of dental devices. On Nov. 1, 1937, Japanese government started to control dental materials, driving the campaigns for excluding foreign products and encourging the use of local products. In 1939, Nakajima dental manufacturers used this political and social atmosphere on their advertisement as saying "Our Nakajima's products have no compromise with the short raw materials, but only commitment to our quality". Since after 1940, the price and supply have been strongly under control, and the control group was appeared to manage all of supply and distribution of raw materials, regular price system, and specifications. At last, the Japanese national power were devastated in its production and distribution capacities, and get to the frustrated period. The main advertised dental devices and instruments in Korea during the Japanese colonized period were 1) dental chair, unit and cabinet, 2) dental x-ray, 3) compressors, 4) dental needles, 5) small instrument and carryon medical(emergency) kit, 6) oral hygiene and pyorrhea alveolaris, infrared rays, sunlight lamp, ultrashort wave treatment devices, 7)crown former, electric furnace, casting machine, articulator, electric lathe, and laboratory equipments, etc.

Simple Empirical Attenuation Relationship for Potential Nuclear Power Plant Sites (원자력발전소의 단순화 된 실증적 지진감쇄 관계)

  • Tanwa, Kankang;Eric, Yee
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.43-49
    • /
    • 2018
  • Seismic hazard assessments are performed on a variety of infrastructure projects. One component of a seismic hazard assessment is the attenuation relationship. Several attenuation relationships have been developed over the decades to predict peak ground acceleration under a variety of site conditions. For example, many attenuation relationships were designed to estimate peak ground acceleration, as well as other intensity measures, under a variety of soil conditions, mostly using the average shear wave velocity for the upper 30 m of earth material as a classification scheme. However, certain types of infrastructure, such as tunnels and nuclear power plants, are typically founded on and in bedrock. Using data from Japan, we developed a simple correlation to estimate peak ground acceleration for rock sites and compare the results from another popular attenuation relationship. Results indicate the popular attenuation relationship to be less than the proposed model for distances less than 200 km.

3-Dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading (3차원 수치해석을 이용한 지진 시 수직구-터널 접속부 동적 거동 분석)

  • Kim, Jung-Tae;Cho, Gye-Chun;Kang, Seok-Jun;Kim, Ki Jung;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.887-897
    • /
    • 2018
  • 3D time history analysis was performed on vertical shaft-tunnel connection to provide insight into the dynamic stress-strain behavior of the connection considering the effects of soil layers, periodic characteristics and wave direction of earthquakes. MIDAS GTS NX based on FEM (Finite Element Method) was used for this study. From this study, it is revealed that the maximum displacement occurred at the upper part of the connection when the long period seismic waves propagate through the tunnel direction in soft ground. Also, stress concentration occurs due to different behaviors of vertical shaft and tunnel, and the stress concentration could be influence for safety on the connection. The results of this study could be useful for the seismic performance design of vertical shaft-tunnel connection.

A Study of GPS Precise Ephemeris Interpolation for Maritime Precise Positioning Applications (해양 정밀측위 활용을 위한 GPS 정밀위성궤도 보간 연구)

  • Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.699-702
    • /
    • 2009
  • Currently many vessels determine an overhead obstruction by a rule of thumb based on their draft for maritime navigation. Therefore they doesn't have a good overhead obstruction clearance because vertical position of vessels varies on time by tidal. As a result, it is occurred maritime accidents that the mainmast of vessels is bumped against overhead facilities. And disaster by global warming and rising sea levels have increased casualties. So we feel keenly the necessity of warning system for not an earthquake but disaster wave such a tsunami. This paper analyzes a precise GPS ephemeris for maritime precise positioning to solve these problems. The precise GPS ephemeris provided by International GNSS service gives a difficulty to real-time application because of its sample interval. This paper proposes an effective interpolation method for real-time application, and it analyzes an accuracy of precise GPS ephemeris through an interpolation method.

Vibration Displacements Measurement of Slope Models using Close Range Photogrammetry (근거리 사진측량을 이용한 사면모형 진동 변위 측정)

  • Jung, Sung-Heuk;Lee, Jae-Young;Choi, Suk-Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.561-568
    • /
    • 2011
  • The purpose of this study is to measure displacements that occurs on a surface and interior of slope model and the shape when the slope is destroyed at vibration experiment of the slope model using close range photogrammetry. The circle targets and sphere targets are installed on a chamber and a slope model, while the earthquake wave are applied in regular time interval. The close range photogrammetric images are acquired in each displacements step until the slope model is destroyed. Those photos are processed by image processing method and the center points of targets are automatically extracted. Furthermore, the three-dimensional coordinates of targets are calculated by image orientation and bundle adjustment processing. As a result, amount of displacement at each level is precisely measured and provided the basic information for assessing the slope stability using three-dimensional measurement of the target movement and slope destruction.

Trans Korean Peninsula-Japanese Island Seismic Observation and Analysis; Seismic Observation of Broad Band and Wide Dynamic Range at Pohang STS Observatory, Korea (한반도-일본열도 사이의 광역지진관측 및 해석 ; 포항 STS지진관측소에서의 광대역, 고감도의 지진관측)

  • Kim, Sung Kyun;Chung, Seung Hwan;Jun, Myung Soon;Kyung, Jai Bok;Jeon, Jeong Soo;Ryoo, Yong Gyu;Oike, Kazuo;Fukao, Yoshio;Yamada, Isao;Ishihara, Keiko;Ishihara, Yasushi
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.97-106
    • /
    • 1993
  • In order to provide informations for the earth's deep interior and the earthquake mechanism, we have been operating the three components of Streckeisen Seismometers at Pohang Observatory, Korea, as a part of a long period seismic network (POSEIDON) in the northwestern Pacific now under construction. The recording system is specially designed to be able to obtain outputs of broad band and wide dynamic range; BRB (Broad Band), LP (Long Period), and VLP (Very Long Period) output. The triggered BRB and LP signals are digitized with the sampling intervals of 0.1 and 0.4 second, respectively. The lowpass filtered VLP output is digitized and recorded contineously with the sampling interval of 10 seconds. About 120 regional and teleseismic events have been successfully recorded for one and half year since late March, 1991. As a preliminary study, eight events of them are analyzed to determine Rayleigh wave dispersion curves in the period range of 20 to 300 seconds for the continental and oceanic paths. The curves are compared with the typical continental and oceanic ones to discuss the earth's deep interior.

  • PDF

Seismic Evaluation of Supporting Reactions for the Bridge with Various Curvatures and Skew Angles (지진하중 하에서 교량 곡률과 사각 크기에 따른 받침부의 반력 검토)

  • Park, Seong-Ryel;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • This study has addressed to evaluate the effects of radius of curvature and skew angle on the negative reaction in a plate girder bridge with LRB (Lead Rubber Bearing) supports. As analytical parameters, various radius of curvatures and skew angles were selected and two seismic loads of El-Centro and artificial earthquakes were applied to the bridge in the longitudinal and transverse directions. As results of 3D analysis, the possibility of negative reaction is shown at the part of acute angle and inner side of the curved bridge, and becomes increased when seismic load is applied in the transverse direction. In addition, the occurrence of negative reaction is found to be increased as both radius of curvature and skew angle decrease, which means that curved bridge has higher possibility of negative reaction than straight one. Conclusively, all of earthquake wave, gradient, radius of curvature and skew angle should be considered together to investigate the possibility of negative reaction at the bridge support subject to seismic load.

Evaluation of Aseismic Performance for Reservoir Dams in Korea (국내 저수지 댐의 내진 성능 평가)

  • Park, Innjoon;Kim, Seungwook;Jang, Woonghee;Kim, Hyuntae;Yoo, Chanho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.89-100
    • /
    • 2006
  • Recently, lots of lives and properties have been lost because comparatively large magnitude earthquakes were occurred in relatively safe regions and nations. It has been reported that number of earthquakes was increased rapidly in Korea. Hence, recently civil constructions were ensured against risks about earthquake not only large-scale structures but also comparative small-scale structures such as reservoir dams and life line by systematic aseismic design. Therefore, in this study, the seismic stability was ensured to evaluate aseismic performance for major planned reservoir dams in Korea. The seismic response analyses were conducted using SHAKE program on new reservoir dams under short-period, long-period and artificial seismic wave. The liquefaction potential for reservoir dams was assessed by using results from seismic response analysis (simplified assessment method for liquefaction potential). Also, fully coupled analysis--interaction of pore-pressure and soil--was performed to investigate both the development of excess pore water pressure and the characteristic of dynamic shear strain.

  • PDF

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.

Principal component analysis based frequency-time feature extraction for seismic wave classification (지진파 분류를 위한 주성분 기반 주파수-시간 특징 추출)

  • Min, Jeongki;Kim, Gwantea;Ku, Bonhwa;Lee, Jimin;Ahn, Jaekwang;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.687-696
    • /
    • 2019
  • Conventional feature of seismic classification focuses on strong seismic classification, while it is not suitable for classifying micro-seismic waves. We propose a feature extraction method based on histogram and Principal Component Analysis (PCA) in frequency-time space suitable for classifying seismic waves including strong, micro, and artificial seismic waves, as well as noise classification. The proposed method essentially employs histogram and PCA based features by concatenating the frequency and time information for binary classification which consist strong-micro-artificial/noise and micro/noise and micro/artificial seismic waves. Based on the recent earthquake data from 2017 to 2018, effectiveness of the proposed feature extraction method is demonstrated by comparing it with existing methods.