• Title/Summary/Keyword: earthquake safety

검색결과 895건 처리시간 0.026초

Capacity design by developed pole placement structural control

  • Amini, Fereidoun;Karami, Kaveh
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.147-168
    • /
    • 2011
  • To ensure safety and long term performance, structural control has rapidly matured over the past decade into a viable means of limiting structural responses to strong winds and earthquakes. Nonlinear response history analysis requires rigorous procedure to compute seismic demands. Therefore the simplified nonlinear analysis procedures are useful to determine performance of the structure. In this investigation, application of improved capacity demand diagram method in the control of structural system is presented for the first time. Developed pole assignment method (DPAM) in structural systems control is introduced. Genetic algorithm (GA) is employed as an optimization tool for minimizing a target function that defines values of coefficient matrices providing the placement of actuators and optimal control forces. The ground acceleration is modified under induced control forces. Due to this, performance of structure based on improved nonlinear demand diagram is selected to threshold of nonlinear behavior of structure. With small energy consumption characteristics, semi-active devices are especially attractive solutions for limiting earthquake effects. To illustrate the efficiency of DPAM, a 30-story steel moment frame structure employing the semi-active control devices is applied. In comparison to the widely used linear quadratic regulation (LQR), the DPAM controller was shown to be just as effective and better in the reduction of structural responses during large earthquakes.

Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

  • Ali, Ahmer;Abu-Hayah, Nadin;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.825-837
    • /
    • 2017
  • Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

재난재해 시 응급대피공간으로서 학교시설의 디자인 고려요소 -대피거점기능과 교육활동유지기능을 중심으로- (The School Design Factors as Emergency Shelter after Disaster - Focus on the Function for Evacuation Center and Education Maintenance)

  • 김경숙;김민경
    • 교육시설 논문지
    • /
    • 제18권4호
    • /
    • pp.69-77
    • /
    • 2011
  • The purpose of this study is to provide the school planning factors as emergency shelter after disaster. The school functions as the evacuation space areas could be classified into the evacuation center, education maintenance, and dwelling. Among these functions, the scopes of our study are limited to the functions of evacuation center and education maintenance. To carry out this purpose, we were comparative analyzed the shelter space problems of Korea and Japan's survey in the existing literatures. In results of our study, the evacuation center's functions are difficult to depending on the disaster types, such as the earthquake, tornado, and hurricane. On the other hand, the education maintenance functions are difficult to deepening on the victims occupied times in the school as emergency shelters. Based on these findings, the Korea school planning as the emergency shelters are desired to reflect that the evacuation's functions based on the disaster type of the damage from storms, and the education maintenance's functions based on the victim's occupied times in school for their safety.

  • PDF

울진 원자력발전소 부지에 대한 지진해일 위험도 재평가 (Revaluation of Tsunami Risk at the Site of Ulchin Nuclear Power Plant)

  • 이해균;이대수
    • 한국해안해양공학회지
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2002
  • 과거, 울진원전 부지의 지진해일에 대한 안전성 평가는 가상최대 지진규모와 그에 상응하는 단층 파라미터를 이용하여 수행되었으나. 최근 지진공백역 이론에 근거하여, 과거 평가 규모 이상의 지진발생 가능성이 지진학자들에 의하여 제기되고 있다. 본 연구에서는 선형·비선형천수방정식 기반의 유한차분법을 이용하여 지진해일 안전성을 재평가하였다. 먼저, '83년 지진해일을 모의하고 이를 동해안 임원항의 최고 범람 수위와 비교하였다. 다음으로 '83년, '93년 지진해일과 위험 단층으로 분류되고 있는 5개 지진공백역 단층에 대하여 울진원전부지 도수로에서의 수위 상승과 저하를 계산하여, 울진원전이 평가대상 단층으로 의한 지진해일 발생시에도 필요 냉각수의 취수가 가능함을 보였다.

LNG 저장탱크의 면진시스템 적용을 위한 내진설계 (Seismic design for application of LNG storage tank isolation system)

  • 서기영;박현재;양성영;김남식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.132-138
    • /
    • 2013
  • Natural gas as a clean fuel of the world demand for the trend is gradually increasing demand for clean energy in the country and there is growing interest. Therefore, LNG storage tanks and related facilities in the country of the importance of leading a community-based facility has emerged. So common sense that an earthquake with a seismic isolation device LNG storage tank similar to the actual behavior of the analytical model which can describe the development and construction of storage tanks to enhance the safety and economic design techniques need to be developed. In this study, a base isolation system, seismic analysis procedure of LNG storage tanks, and Triple-FPB developed a mathematical model of the present crystallized and complexity factors to the sum over histories model simplifies the complex behavior of the LNG storage tank with base isolation system how to interpret the seismic isolation is proposed.

  • PDF

재난관리를 위한 유비쿼터스 정보기술 활성화 방안 (A Study on the Revitalization Ubiquitous Information Technology for the Disaster Management)

  • 채진;송용선
    • 한국화재소방학회논문지
    • /
    • 제23권6호
    • /
    • pp.24-31
    • /
    • 2009
  • 재난의 환경은 매우 복잡 다양한 양상을 띠고 있으며, 예측 불가능한 재난의 발생으로 인하여 대규모인적소(昭)걋$^{\circ}$ 피해를 입고 있다. 특히, 최근에는 기상이변 현상으로 말미암아 대홍수와 혹서, 가뭄, 혹한, 지진 등 대규모 자연재난이 세계 전역에 걸쳐 발생하고 있는 실정이다. $9{\cdot}11$ 테러사건이후 대부분의 국가는 국민의 생명과 재산의 보호는 물론 국가 안전망을 구축하기 위한 노력을 꾸준히 진행하고 있다. 본 연구는 재난대응 기관인 소방서에서 현재 사용하고 있는 재난정보시스템의 실태를 분석하고, 재난관리를 위한 유비쿼터스(Ubiquitous) 정보기술 활성화 방안, 즉 재난정보 데이터베이스구축, 재난주기 통보, 위험성 분석, 시설물정보 시스템, 재난방송 시스템, 위치추적 시스템, 재난피해수집 시스템 등을 재난단계별로 제시하여 안전한 국민의 삶을 실현하고자 하였다.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Layout evaluation of building outrigger truss by using material topology optimization

  • Lee, Dongkyu;Shin, Soomi;Lee, Jaehong;Lee, Kihak
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.263-275
    • /
    • 2015
  • This study presents conceptual information of newly optimized shapes and connectivity of the so-called outrigger truss system for modern tall buildings that resists lateral loads induced by wind and earthquake forces. In practice, the outrigger truss consists of triangular or Vierendeel types to stiffen tall buildings, and the decision of outrigger design has been qualitatively achieved by only engineers' experience and intuition, including information of structural behaviors, although outrigger shapes and the member's connectivity absolutely affect building stiffness, the input of material, construction ability and so on. Therefore the design of outrigger trusses needs to be measured and determined according to scientific proofs like reliable optimal design tools. In this study, at first the shape and connectivity of an outrigger truss system are visually evaluated by using a conceptual design tool of the classical topology optimization method, and then are quantitatively investigated with respect to a structural safety as stiffness, an economical aspect as material quantity, and construction characteristics as the number of member connection. Numerical applications are studied to verify the effectiveness of the proposed design process to generate a new shape and connectivity of the outrigger for both static and dynamic responses.

Experimental investigation of a new steel friction device with link element for seismic strengthening of structures

  • Papadopoulos, Panikos K.;Salonikios, Thomas N.;Dimitrakis, Stergios A.;Papadopoulos, Alkis P.
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.487-504
    • /
    • 2013
  • In the present work a new friction device, with a set of single or double rotational friction flanges and a link element, is described and tested. The mechanism may be applied for the strengthening of existing r/c or steel buildings as well as in new constructed buildings. The device has selectable variable behavior in different levels of displacement and an interlock mechanism that is provided by the link element. The link element may be designed to lock at preselected level of displacement, offering in this way an extra safety reserve against strong earthquakes. A summary of the existing literature about other similar mechanisms is initially presented in this paper. The proposed mechanism is presented and described in details. Laboratory experiments are presented in detail and the resulted response that proves the efficiency of the mechanism at selectable levels of strength capacity is discussed. Drawings of the mechanism attached to a r/c frame with connection details are also included. Finally a dynamic analysis of two r/c frames, with and without the proposed mechanism attached, is performed and the resulted response is given. The main conclusion is that the proposed mechanism is a cheap and efficient devise for the improvement of the performance of new or existing framed buildings to seismic loads.

Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang;Ou, Xiang;Chen, Chen-Jie
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.295-306
    • /
    • 2019
  • Shanghai Tower is a 632-meter super high-rise building located in an area with wind and active earthquake. A sophisticated structural health monitoring (SHM) system consisting of more than 400 sensors has been built to carry out a long-term monitoring for its operational safety. In this paper, a reduced-order model including 31 elements was generated from a full model of this super tall building. An iterative regularized matrix method was proposed to tune the system parameters, making the dynamic characteristic of the reduced-order model be consistent with those in the full model. The updating reduced-order model can be regarded as a benchmark model for further analysis. A long-term monitoring for structural dynamic characteristics of Shanghai Tower under different construction stages was also investigated. The identified results, including natural frequency and damping ratio, were discussed. Based on the data collected from the SHM system, the dynamic characteristics of the whole structure was investigated. Compared with the result of the finite element model, a good agreement can be observed. The result provides a valuable reference for examining the evolution of future dynamic characteristics of this super tall building.