• 제목/요약/키워드: earthquake resistant design

검색결과 218건 처리시간 0.028초

Optimum design of viscous dampers to prevent pounding of adjacent structures

  • Karabork, Turan;Aydin, Ersin
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.437-453
    • /
    • 2019
  • This study investigates a new optimal placement method for viscous dampers between structures in order to prevent pounding of adjacent structures with different dynamic characteristics under earthquake effects. A relative displacement spectrum is developed in two single degree of freedom system to reveal the critical period ratios for the most risky scenario of collision using El Centro earthquake record (NS). Three different types of viscous damper design, which are classical, stair and X-diagonal model, are considered to prevent pounding on two adjacent building models. The objective function is minimized under the upper and lower limits of the damping coefficient of the damper and a target modal damping ratio. A new algorithm including time history analyses and numerical optimization methods is proposed to find the optimal dampers placement. The proposed design method is tested on two 12-storey adjacent building models. The effects of the type of damper placement on structural models, the critical period ratios of adjacent structures, the permissible relative displacement limit, the mode behavior and the upper limit of damper are investigated in detail. The results of the analyzes show that the proposed method can be used as an effective means of finding the optimum amount and location of the dampers and eliminating the risk of pounding.

콘크리트충전 강합성 교각의 구조적 거동에 관한 연구 (The Study on the Structural Behavior of Concrete-filled Composite Piers)

  • 김유경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

지진하중을 받는 대공간 구조물의 동적 거동 특성 (The Characteristics of Dynamic Behaviors for the Spatial Structures under Seismic Loads)

  • 김민식;이상주;이동우;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.628-635
    • /
    • 2005
  • The earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for the stability For those purposes, recently, the seismic isolation system to reduce earthquake energy has been used. So, it is necessary to examine the characteristics of dynamic behavior of spatial structures governed by higher modes rather than lower modes different from the cases of high rise buildings. The objectives of this paper are to inspect the efficiency of the equivalent model method according to the various earthquake loads and half-open angles. Moreover it is examined the dynamic behaviors according to change the mass and the stiffness of sub-structures as a fundamental study of performance design for the spatial structures. Finally, seismic isolation system is applied to boundary parts of roof system and sub-structure to obtain the target performance.

  • PDF

교량의 지진응답거동에 작용하는 액체점성감쇠기의 감쇠효과 분석 (Damping Effects of Fluid Viscous Dampers on the Seismic Response of Bridges)

  • 정상모;안창모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.379-386
    • /
    • 2001
  • Fluid viscous dampers have been used as energy dissipators or STU's (Shock Transmission Unit) in earthquake resistant designs for bridges. Viscous dampers have many advantages compared to other friction type or visco-elastic type of dampers. They do neither increase internal pier forces due to their out of phase response, nor produce reaction forces at the low velocities associated with thermal movements. Therefore, they anable the super structure to restore itself perfectly after a severe movement dut to seismic excitations. This paper investigates the response of bridges designed with viscous dampers in regard to damping coefficients, properties of dampers, and arrangements of dampers. For this purpose, time-history dynamic analyses have been performed using a very simple model relevant to a typical bridge example. Based on the results, it presents some design duidelines on how to determine a proper damping ratio and on how to arrange dampers. In usual cases, damping coefficients corresponding to about 0.2-0.3 of damping ratios seem to be very effective in bridge designs.

  • PDF

An investigation of torsionally irregular multi-story buildings under earthquake loading

  • Ozmen, G.;Gulay, F.G.
    • Structural Engineering and Mechanics
    • /
    • 제14권2호
    • /
    • pp.237-243
    • /
    • 2002
  • It is well known that torsionally unbalanced buildings are more vulnerable to earthquake hazards than are the regular structural systems. In this paper, a parametric investigation is presented, in order to observe the amplification in the internal forces, when increased eccentricities are used instead of the ones corresponding to the 5% accidental eccentricity. A series of five, ten-story framed and walled structures, with rather high torsional irregularity coefficients, are selected and a numerical test procedure is applied. Numerical results show that the maximum amplification in the internal forces at the most critical beams and columns at the flexible sides of the structures is about 10%. It is concluded that, more serious measures in the codes are needed in the case of this rather dangerous type of irregularity.

진동대 실험을 이용한 암반비탈면의 가속도 특성 (Acceleration Behavior of Rock Slope by Shaking Table Test)

  • 강종철;윤원섭;박연준
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.841-848
    • /
    • 2021
  • This study investigated the acceleration characteristics of rock slopes when earthquakes, which have not been studied much in Korea, occur. The rock slope was modeled with a similar raw of 1/20 in consideration of the height(10m), roughness, strength, and the joint dips(20°). After the completion of the model, a shaking table tests was conducted according to the magnitude of the acceleration and the type of seismic wave. The maximum acceleration was greater in the short-period seismic wave than in the long-period seismic wave, and the maximum acceleration was larger in the small acceleration. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. In the event of an earthquake smaller than the domestic earthquake-resistant maximum design acceleration(0.154g), safety management of the rock slope was required.

포항지진 발생 주변지역 지질특성에 따른 저수지 취약성 해석 (Analysis of Reservoir Vulnerability Based on Geological Structure Around Pohang Earthquake)

  • 임성근;송성호;유재형
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.169-174
    • /
    • 2018
  • A total of 594 reservoirs (17%), which are managed by KRC, equipped with earthquake-resistant facilities whereas remaining ones did not. In addition, reservoirs were placed without the effect of geological structures (i.e., fault and lineament). Therefore, development on technique for alleviating the potential hazards by natural disasters along faults and lineaments has required. In addition, an effective reinforcement guideline related to the geological vulnerabilities around reservoirs has required. The final goal of this study is to suggest the effective maintenance for the safety of earth fill dams. A radius 2 km, based on the center of the reservoir in the study area was set as the range of vulnerability impacts of each reservoir. Seismic design, precise safety diagnosis, seismic influence and geological structure were analyzed for the influence range of each reservoir. To classify the vulnerability of geological disasters according to the fault distribution around the reservoir, evaluation index of seismic performance, precise safety diagnosis, seismic influence and geological structure were also developed for each reservoir, which were a component of the vulnerability assessment of geological disasters. As a result, the reservoir with the highest vulnerability to geological disasters in the pilot district was analyzed as Kidong reservoir with an evaluation index of 0.364. Within the radius of 100km from the epicenter of the Pohang earthquake, the number of agricultural infrastructure facilities subject to urgent inspections were 1,180 including reservoirs, pumping stations and intakes. Four reservoirs were directly damaged by earthquake among 724 agricultural reservoirs. As a result of the precise inspection and electrical resistivity survey of the reservoir after the earthquake, it was reported that cracks on the crest of reservoirs were not a cause of concern. However, we are constantly monitoring the safety of agricultural facilities by Pohang aftershocks.

면진 테이블 시스템의 동적 특성 및 면진성능 (Dynamic Characteristics and Isolation Performance of Isolation Table System)

  • 황재승;주석준;김윤석
    • 한국지진공학회논문집
    • /
    • 제5권4호
    • /
    • pp.67-74
    • /
    • 2001
  • 지진에 대한 구조물의 건전도는 내진설계에 의하여 많이 개선된 반면, 구조물 내부의 설비 및 중요 장비등에 대한 안정성은 최근에 관심을 가지게 되었다. 특히 국보급 문화재나 소장품은 그 가치에 비하여 지진에 대한 안전성이 고려되지 않은 것은 사실이다. 본 연구에서는 지진에 의하여 발생할 수 있는 내부 기기 및 문화재의 전도, 낙하를 방지하기 위한 면진 시스템을 개발하여, 본 장치에 대한 면진성능을 진동대 실험을 통하여 검증하였다. 본 면진 테이블은 전시물의 하부에 설치되어, 바닥판의 진동이 전시대에 전달되는 것을 차단하는 격리시스템이다. 면진성능시험 결과, 면진성능이 80-90%이며 면진테이블의 최대 스트로트내에서 안정적으로 거동하는 것으로 나타났다.

  • PDF

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.

벽체-감쇠 복합시스템을 갖는 건물의 지진취약도 분석 (Seismic Fragility Analysis of Buildings With Combined Shear Wall-Damper System)

  • 라지불 이슬람;수딥타 차크라보르티;공병진;김두기
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.91-99
    • /
    • 2023
  • Structural vibration induced by earthquake hazards is one of the most significant concerns in structure performance-based design. Structural hazards evoked from seismic events must be properly identified to make buildings resilient enough to withstand extreme earthquake loadings. To investigate the effects of combined earthquake-resistant systems, shear walls and five types of dampers are incorporated in nineteen structural models by altering their arrangements. All the building models were developed as per ACI 318-14 and ASCE 7-16. Seismic fragility curves were developed from the incremental dynamic analyses (IDA) performed by using seven sets of ground motions, and eventually, by following FEMA P695 provisions, the collapse margin ratio (CMR) was computed from the collapse curves. It is evident from the results that the seismic performance of the proposed combined shear wall-damper system is significantly better than the models equipped with shear walls only. The scrutinized dual seismic resisting system is expected to be applied practically to ensure a multi-level shield for tall structures in high seismic risk zones.