• 제목/요약/키워드: earthquake protection system

검색결과 59건 처리시간 0.026초

Recent Research and A, pp.ication of Earthquake Protection System in Taiwan

  • Chang, Kuo-Chun;Tsai, Meng-Hao
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.37-49
    • /
    • 1998
  • Research and a, pp.ication of earthquake protection system in Taiwan have become very active since about ten years ago. Many passive isolators, etc., have been studied extensively. These studies have resulted in a few practical a, pp.ications and proposals of two draft design provisions for seismic isolation design of bridges and buildings. In addition to the pass control, analytical studies on active semi-active control have also been very active and the experimental studies have scheduled in the near future. This paper summarise the progress on recent research and a, pp.ication of earthquake protection systems in Taiwan. The emphases are given to the control systems that have been a, pp.ied in practical a, pp.ications.

  • PDF

Structure's base design for earthquake protection numerical and experimental study

  • Alsaif, K.;Kaplan, H.
    • Structural Engineering and Mechanics
    • /
    • 제16권1호
    • /
    • pp.101-114
    • /
    • 2003
  • A base isolation system is proposed for earthquake protection of structures. The system incorporates spherical supports for the base, a specially designed spring-cam system to keep the base rigidly supported under normal condition and to allow it to move for the duration of the earthquake under the constraint of a spring with optimized non-linear characteristics. A single-story model is constructed to investigate the feasibility of the concept. Numerical simulations of the system as well as experimental results show that 95% reduction of the transmitted force to the structure can be achieved. To demonstrate the effectiveness of this isolation mechanism, the maximum dynamic bending stress developed at predetermined critical points within the frame of the structure is measured. Significant reduction of the dynamic stresses is obtained.

소방설비 내진설계에 관한 각국 기준 비교 연구 (Review of Code Provisions on Seismic Design of Fire Protection System)

  • 이현진;신이철;이재영;서동구;한병찬;김재환;권영진
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.238-241
    • /
    • 2008
  • In this paper, provisions related with the seismic design and equipments of fire protection system are being considered. The provisions from various international codes on seismic design fire protection system were reviewed. The codes, reviewed are, Japanese code, NFPA guideline and Korean code. It is noted that all the codes excepted to korean code consider earthquake effect to evaluate seismic forces and behaviors. But, korean provision are not covered in seismic response in all. A brief description on limitations in korean code is also presented.

  • PDF

Characteristics of Korean Earthquakes and Research Activities for the Seismic Hazard Mitigation in Korea

  • Chang, Sung-Pil
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.1-12
    • /
    • 1998
  • Korea is not considered to be one of the safe zones for earthquakes any more. According to the records of the historical records and recent earthquake events in Korea, the possibillty of disastrous seismic hazards cannot be ignored, Korea Earthquake Engineering Research Center (KEERC) and Earthquake Engineering Society of Korea(EESK) have been established by that consensus. In this paper, historical earthquake records and seismicity in Korea are reviewed. And the research activities and the research system for the earthquake hazards mitigation of KEERC are introduced and the efforts of ESSK to renovate seismic design code system and to optimize the protection levels against earthquake disasters is explained.

  • PDF

화재방호계통 복층구조 스프링클러 파이프라인 내진성능 평가 (Evaluation of Seismic Performance of 2-Story Fire Protection Sprinkler Piping System)

  • Jeon, Jun-Tai;Jung, Woo-Young;Ju, Bu-Seog
    • 한국재난정보학회 논문집
    • /
    • 제10권3호
    • /
    • pp.458-464
    • /
    • 2014
  • 화재방호계통 스프링클러 시스템의 경우 지진 발생 시 그리고 지진 발생 후에 유도되는 화재로부터 건물과 인명을 보호하고 에너지를 공급을 위한 필수 요소라 할 수 있다. 본연구의 주목적은 양방향 (x, y) 그리고 3축(x, y, z)방향의 지진의 영향을 받는 저층 건물에 설치된 복층구조 스프링클러 파이프라인의 거동과 내진성능을 평가 하고자 함이다. 결과적으로 건물의 비구조 요소인 스프링클러 파이프라인의 경우 각 층별로 다른 거동을 보이고 있으며, 또한 수직 방향의 지진의 경우 수평방향의 지진보다 파이프라인에 미치는 영향은 미미하다고 볼 수 있다.

소방시설 내진설계의 필요성과 기준정비에 관한 연구 (The Study on the Necessity of Seismic Design for Fire Protection System and the Establishment of Standard)

  • 신이철;한병찬;박선규;이현진;권영진
    • 한국화재소방학회논문지
    • /
    • 제23권2호
    • /
    • pp.6-12
    • /
    • 2009
  • 최근 세계적으로 대규모 지진들이 발생하고 있다. 이러한 지진의 피해는 진동에 의한 피해보다 지진으로 소방시설이 기능을 상실하여 전기 및 가스설비의 파손으로 발생하는 화재를 진압하지 못한 2차적 피해가 더 크다. 따라서 현재 우리나라의 지진 발생 추이를 확인할 필요가 있다. 본 연구에서는 미국과 일본의 소방시설의 지진피해 사례 및 내진설계기준을 분석 하였으며, 우리나라와 유사한 미국의 기준과 비교한 결과 소방시설 내진설계기준의 적용범위가 우리나라의 건축 구조물의 특성에 매우 비효율적인 것으로 나타났다. 이에 따라 국내 현실을 감안하여 적용범위를 설정하도록 제안하였다.

Resilient structures in the seismic retrofitting of RC frames: A case study

  • Pallares, Francisco J.;Dominguez, David;Pallares, Luis
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.57-65
    • /
    • 2020
  • It is very important to allocate valuable resources efficiently when reconstructing buildings after earthquake damage. This paper proposes the use of a simple seismic retrofitting system to make buildings more resilient than the stiffer systems such as the shear walls implemented in Chile after the earthquake in 2010. The proposal is based on the use of steel chevron-type braces in RC buildings as a dual system to improve the seismic performance of multistory buildings. A case study was carried out to compare the proposal with the shear wall solution for the typical seismic Chilean RC building from the structural and economic perspectives. The results show that it is more resilient than other stiffer seismic solutions, such as shear walls, reduces the demand, minimizes seismic damage, gives reliable earthquake protection and facilitates future upgrades and repairs while achieving the level of immediate occupancy without the costs of the shear walls system.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

Capacity Design of RC Bridge Columns for Seismic Loading

  • 이재훈;고성현;최진호;신성진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.591-594
    • /
    • 2004
  • Recently, a tendency for development of seismic approach of foreign countries is capacity design development. Capacity design is rational seismic design concept of capacity protection considering not only earthquake magnitude, but also behavior of structure. For that reason, the most bridge seismic design specifications contain capacity protection provisions explicitly or implicitly. The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. The objectives of this paper are to deduce needed provisions for the moderate seismicity regions such as Korea after studying current seismic design codes and to establish rational criteria provisions of seismic design for future revision of seismic design specifications.

  • PDF

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.