• Title/Summary/Keyword: earthquake protection

Search Result 126, Processing Time 0.018 seconds

Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles

  • Zahrai, Seyed Mehdi;Kakouei, Sirous
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.391-401
    • /
    • 2019
  • Control of vibrations against extraordinary excitations such as wind and earthquake is very important to the protection of life and financial concerns. One of the methods of structural control is to use Tuned Liquid Damper (TLD), however due to the nature of TLD only one sloshing frequency can be created when the water is sloshing. Among various ideas proposed to compensate this problem, by changing the angle of some rotatable baffles embedded inside a TLD, a frequency range is created such that these baffles are tuned manually at different frequencies. In this study, the effect of cross sectional shape of container with rotating baffles on seismic behavior of TLD is experimentally studied. For this purpose, rectangular and cylindrical containers are designed and used to suppress the vibrations of a Single Degree-Of-Freedom (SDOF) structure under harmonic and earthquake excitations considering three baffle angles. The results show that the rectangular-shaped damper reduces the structural response in all load cases more than the damper with a cylindrical shape, such that maximum differences of two dampers to reduce the structural displacement and structural acceleration are 5.5% and 3% respectively, when compared to the cases where no baffles are employed.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

Seismic performance evaluation of a steel slit damper for retrofit of structures on soft soil

  • Mahammad Seddiq Eskandari Nasab;Jinkoo Kim;Tae-Sang Ahn
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • This paper presents an experimental and analytical study on a steel slit damper designed as an energy dissipative device for earthquake protection of structures considering soil-structure interaction. The steel slit damper is made of a steel plate with a number of slits cut out of it. The slit damper has an advantage as a seismic energy dissipation device in that the stiffness and the yield force of the damper can be easily controlled by changing the number and size of the vertical strips. Cyclic loading tests of the slit damper are carried out to verify its energy dissipation capability, and an analytical model is developed validated based on the test results. The seismic performance of a case study building is then assessed using nonlinear dynamic analysis with and without soil-structure interaction. The soil-structure system turns out to show larger seismic responses and thus seismic retrofit is required to satisfy a predefined performance limit state. The developed slit dampers are employed as a seismic energy dissipation device for retrofitting the case study structure taking into account the soil-structure interaction. The seismic performance evaluation of the model structure shows that the device works stably and dissipates significant amount of seismic energy during earthquake excitations, and is effective in lowering the seismic response of structures standing on soft soil.

Efficient Panel Shapes for Seismic Resistance of Stainless Steel Water Tank (스테인리스 물탱크 내진설계를 위한 효율적 패널 형상)

  • Kim, Sungwuk;Kim, Taeeun;Oh, Sungryoung;Ji-Hun Park
    • Journal of Urban Science
    • /
    • v.12 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • The seismic design of water tanks for fire protection is important to prevent secondary earthquake damages due to fires. In this study, the seismic performance of stainless steel water tanks was evaluated considering both static and dynamic water pressure effects, and the influence of different panel shapes was investigated through numerical analysis. First, a basic water tank model comprised of flat panels was built, and then water pressure distribution including sloshing effects was evaluated. In the result of structural analysis, many panels of the basic water tank exceeded a specified allowable stress for load combinations including earthquake loads. In order to reduce the bending stress of the panel by increasing the moment of inertial of the panel section, alternative shapes of a truncated quadrangular pyramid were developed. Five water tanks with different alternative panel shapes were built and analyzed for the same load combinations. Based on the results of the numerical analysis, a number of effective aspect ratios were selected and modified to increase economic feasibility through additional analysis and structural safety check.

Impact of Earthquake Response Perception on Fire officials on Organizational Citizenship Behavior (소방공무원의 지진 대응인식이 조직시민행동에 미치는 영향)

  • Kim, JeeYun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.343-352
    • /
    • 2020
  • Purpose: This study identifies the impact on composition of the firefighting organization, fire command ability, and public opinion operation on organizational citizenship behavior for fire officials to respond to the earthquake disaster, and provides practical implications as basic data for firefighting organizations to cope with the earthquake disaster. Method: Questionnaire survey was performed for 159 fire officials, and the surveyed data was statistically analyzed by using SPSS 22.0 program. Result: First, the results of the verification of the hypothesis showed that the composition of the fire organization, firefield command ability and public opinion operation have a positive impact on organizational citizenship behavior. Second, the relative contribution of independent variables to the dependent variables was identified in the order of composition of fire organization, fire command ability and public opinion operation. Conclusion: The implications of this study suggested from a practical perspective that the government needs to organize firefighting organizations, develop firefield command ability and operate public opinion in advance in order to respond to earthquakes.

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

The Seismic Design of Water Extinguishing Piping Systems for Equivalent Static Analysis Method (등가정적해석법에 의한 수계 파이프 시스템의 내진설계)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.100-105
    • /
    • 2012
  • In this study, seismic design in pipeline of pressurized water supply system of water extinguishing system has been carried out. This study described a generation of artificial earthquake wave compatible with seismic design spectrum, and also determined equivalent static loads to analyzed the response spectra acceleration by the simulated earthquake motion. This study constructed powerful engineering base for seismic design, and presented equivalent static analysis method for seismic design of water and gas extinguishing piping system. Also, this study readied basis that can apply seismic design and performance estimation of fire fighting system as well as pipeline of water extinguishing system from result of this research. Hereafter, if additional research by earthquake magnitude and ground kind is approached, reliance elevation, safety raising and performance based design of fire fighting system see to achieve.

A New Methodology for Seismic Capacity Evaluation of Low-rise R/C Buildings (비선형요구내력스펙트럼을 이용한 저층 R/C 건물의 내진성능 평가법)

  • Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.106-115
    • /
    • 2011
  • This study proposed a new methodology for seismic capacity evaluation of low-rise reinforced concrete (RC) buildings based on non-linear required spectrum. In order to verify the reliability of the proposed method, relationships between results obtained using the proposed method and the non-linear dynamic analyses were investigated. Compared with the seismic protection index (Es=0.6) defined in the Japanese Standard, the applicability of the method was also estimated. Research results indicate that the method proposed in this study compares reasonably well with the detailed evaluation methods. Using the seismic evaluation method developed in this study, the seismic capacity category and earthquake damage degree of low-rise RC buildings corresponding to a specific earthquake level can be effectively estimated.

Evaluation of the Actual Conditions for the Construction of a Firefighting Safety Management System in Domestic Power Plants (국내발전소 소방안전경영시스템구축을 위한 실태평가에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.89-98
    • /
    • 2018
  • Fire accidents in foreign countries, like the accident in a thermal power plant in Beijing, the accidents in domestic power plants, including Boryeong Power Plant in 2012 and Taean Power Plant in 2016, a disaster in a nuclear power plant in Fukushima in 2011 or the large-scale power failure in California in 2001 are safety accidents related to electric power, which caused losses in the people's stable lives and the countries. Electricity has an absolute impact on the people's life and the economy, so we can easily expect the serious situation affecting economic growth as well as direct damage to the protection of the people's lives and the losses of properties, if there are fire or explosion accidents or radioactive leak because of negligence in safety management, or problems because of natural disasters like an earthquake in power plants that generate electricity. In this study, it was drawn the improvement of the organizations exclusively in charge of firefighting, the operation of a program for the improvement of professional competency, the development of a customized firefighting management system for plants for systematic firefighting safety management and the improvement of the earthquake-proof correspondence system, which has recently become an issue, as measures for improvements through a survey of the actual conditions concerning the necessity of the construction of a firefighting safety management system for power plants with five power generation companies, including Korea Southern Power Co., Ltd., and the persons in charge of firefighting safety Korea Hydro & Nuclear Power Co., Ltd.