• Title/Summary/Keyword: earthquake loss estimation methodology

Search Result 11, Processing Time 0.019 seconds

Earthquake Loss Estimation of Buried Pipeline Considering Permanent Ground Deformation due to Liquefaction (액상화.영구지반변형을 고려한 지중매설관로의 지진피해 평가)

  • Kim, Tae-Wook;Lim, Yun-Mook;Kim, Moon-Kyum
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.102-109
    • /
    • 2005
  • In this study, a prototype model of earthquake loss estimation method will be proposed for the quantitative and qualitative damage evaluation of buried pipeline subjected to Permanent Ground Deformation(PGD) due to liquefaction. With this objective, domestic and foreign status of the arts related with earthquake loss estimation method is summarized at first. Domestic development of computer aided earthquake loss estimation method seems to be difficult for the time being. Thus, referring to HAZUS : Earthquake Loss Estimation Methodology which is developed by FEMA (Federal Emergency Management Agency) and NIBS (National Institute of Building Sciences), earthquake loss estimation procedure of buried pipeline subjected to PGD due to liquefaction are proposed, and then exemplary loss estimation are executed. Considering that there have been no practical earthquake loss estimation method and procedure in Korea, the research accomplishments such as above are considered to be helpful for the substantial development of earthquake loss estimation method of buried pipeline subjected to PGD due to liquefaction.

  • PDF

Earthquake Loss Estimation of the Gyeongju Area using the Deterministic Method in HAZUS (HAZUS의 결정론적 방법을 이용한 경주지역의 지진재해예측)

  • Kang, Su-Young;Kim, Kwang-Hee;Suk, Bong-Chool;Yoo, Hai-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.597-600
    • /
    • 2008
  • Observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Then, the attenuation relation for the Western United States proposed by Sadigh et al.(1997) for the Site Class B has been selected for this study. It has been used for the earthquake loss estimation of the Gyeongju area located in southeast Korea using the deterministic method in HAZUS with a scenario earthquake (M=6.7). Application of the improved methodology for loss estimation in Korea will help decision makers for planning disaster responses and hazard mitigation.

  • PDF

Performance-based earthquake engineering methodology for seismic analysis of nuclear cable tray system

  • Huang, Baofeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2396-2406
    • /
    • 2021
  • The Pacific Earthquake Engineering Research (PEER) Center has been developing a performance-based earthquake engineering (PBEE) methodology, which is based on explicit determination of performance, e.g., monetary losses, in a probabilistic manner where uncertainties in earthquake ground motion, structural response, damage estimation, and losses are explicitly considered. To carry out the PEER PBEE procedure for a component of the nuclear power plant (NPP) such as the cable tray system, hazard curve and spectra were defined for two hazard levels of the ground motions, namely, operation basis earthquake, and safe shutdown earthquake. Accordingly, two sets of spectral compatible ground motions were selected for dynamic analysis of the cable tray system. In general, the PBEE analysis of the cable tray in NPP was introduced where the resulting floor motions from the time history analysis (THA) of the NPP structure should be used as the input motion to the cable tray. However, for simplicity, a finite element model of the cable tray was developed for THA under the effect of the selected ground motions. Based on the structural analysis results, fragility curves were generated in terms of specific engineering demand parameters. Loss analysis was performed considering monetary losses corresponding to the predefined damage states. Then, overall losses were evaluated for different damage groups using the PEER PBEE methodology.

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: seismic hazard, geotechnical and lifeline aspects

  • Pitilakis, Kyriazis D.;Anastasiadis, Anastasios I.;Kakderi, Kalliopi G.;Manakou, Maria V.;Manou, Dimitra K.;Alexoudi, Maria N.;Fotopoulou, Stavroula D.;Argyroudis, Sotiris A.;Senetakis, Kostas G.
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.207-232
    • /
    • 2011
  • The development of reliable earthquake mitigation plans and seismic risk management procedures can only be based on the establishment of comprehensive earthquake hazard and loss scenarios. Two cities, Grevena (Greece) and D$\ddot{u}$zce (Turkey), were used as case studies in order to apply a comprehensive methodology for the vulnerability and loss assessment of lifelines. The methodology has the following distinctive phases: detailed inventory, identification of the typology of each component and system, evaluation of the probabilistic seismic hazard, geotechnical zonation, ground response analysis and estimation of the spatial distribution of seismic motion for different seismic scenarios, vulnerability analysis of the exposed elements at risk. Estimating adequate earthquake scenarios for different mean return periods, and selecting appropriate vulnerability functions, expected damages of the water and waste water systems in D$\ddot{u}$zce and of the roadway network and waste water system of Grevena are estimated and discussed; comparisons with observed earthquake damages are also made in the case of D$\ddot{u}$zce, proving the reliability and the efficiency of the proposed methodology. The results of the present study constitute a sound basis for the development of efficient loss scenarios for lifelines and infrastructure facilities in seismic prone areas. The first part of this paper, concerning the estimation of the seismic ground motions, has been utilized in the companion paper by Kappos et al. (2010) in the same journal.

Loss Estimation in Southeast Korea from a Scenario Earthquake using the Deterministic Method in HAZUS

  • Kim, Kwang-Hee;Kang, Su-Young
    • 한국방재학회:학술대회논문집
    • /
    • 2009.02b
    • /
    • pp.43-50
    • /
    • 2009
  • Strong ground motion attenuation relationship represents a comprehensive trend of ground shakings at sites with distances from the source, geology, local soil conditions, and others. It is necessary to develop an attenuation relationship with careful considerations of characteristics of the target area for reliable seismic hazard/risk assessments. In the study, observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. In the meantime, a few strong ground motion attenuation relationships are proposed and introduced in HAZUS, which have been designed for the Western United States and the Central and Eastern United States. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Then, the attenuation relation for the Western United States proposed by Sadigh et al. (1997) for the Site Class B has been selected for this study. Reliability of the assessment will be improved by using an appropriate attenuation relation. It has been used for the earthquake loss estimation of the Gyeongju area located in southeast Korea using the deterministic method in HAZUS with a scenario earthquake (M=6.7). Our preliminary estimates show 15.6% damage of houses, shelter needs for about three thousands residents, and 75 life losses in the study area for the scenario events occurring at 2 A.M. Approximately 96% of hospitals will be in normal operation in 24 hours from the proposed event. Losses related to houses will be more than 114 million US dollars. Application of the improved methodology for loss estimation in Korea will help decision makers for planning disaster responses and hazard mitigation.

  • PDF

A Methodology of Seismic Damage Assessment Using Capacity Spectrum Method (능력 스펙트럼법을 이용한 건물 지진 손실 평가 방법)

  • Byeon, Ji-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.1-8
    • /
    • 2005
  • This paper describes a new objective methodology of seismic building damage assessment which is called Advanced Component Method(ACM). ACM is a major attempt to replace the conventional loss estimation procedure, which is based on subjective measures and the opinions of experts, with one that objectively measures both earthquake intensity and the response ol buildings. First, response of typical buildings is obtained analytically by nonlinear seismic static analysis, push-over analyses. The spectral displacement Is used as a measure of earthquake intensity in order to use Capacity Spectrum Method and the damage functions for each building component, both structural and non-structural, are developed as a function of component deformation. Examples of components Include columns, beams, floors, partitions, glazing, etc. A repair/replacement cost model is developed that maps the physical damage to monetary damage for each component. Finally, building response, component damage functions, and cost model were combined probabilistically, using Wonte Carlo simulation techniques, to develop the final damage functions for each building type. Uncertainties in building response resulting from variability in material properties and load assumptions were incorporated in the Latin Hypercube sampling technique. The paper also presents and compares ACM and conventional building loss estimation based on historical damage data and reported loss data.

Researches Related to Seismic Hazard Mitigation in Taiwan

  • Loh, Chin-Hsiung;Yeh, Chin-Hsun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.13-26
    • /
    • 1998
  • In view of the rapid development of economics and technology, perilous meteorological and geological conditions often cause natural disasters and result in severe loss of lives and properties in Taiwan. To promote multi-hazard mitigation strategies in an integrated a, pp.oach, the National Science Council established a National Science and Technology Program for Disaster Mitigation in January 1998. This program emphasizes on the implementation of research results in the National Disaster Management System. This paper describes the earthquake loss estimation methodology that is currently developed in Taiwan. Topics of potential earth science hazards (PESH) and building vulnerability analysis are described in detail.

  • PDF

Seismic demand estimation of RC frame buildings based on simplified and nonlinear dynamic analyses

  • Borzi, B.;Vona, M.;Masi, A.;Pinho, R.;Pola, D.
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • Vulnerability studies on the existing building stock require that a large number of buildings is analyzed to obtain statistically significant evaluations of the seismic performance. Therefore, analytical evaluation methods need to be based on simplified methodologies of analysis which can afford the treatment of a large building population with a reasonable computational effort. Simplified Pushover-Based Earthquake Loss Assessment approach (SP-BELA), where a simplified methodology to identify the structural capacity of the building through the definition of a pushover curve is adopted, was developed on these bases. Main objective of the research work presented in this paper is to validate the simplified methodology implemented in SP-BELA against the results of more sophisticated nonlinear dynamic analyses (NLDAs). The comparison is performed for RC buildings designed only to vertical loads, representative of the "as built" in Italy and in Mediterranean countries with a building stock very similar to the Italian one. In NLDAs the non linear and degrading behaviour, typical of the structures under consideration when subjected to high seismic loads, is evaluated using models able to capture, with adequate accuracy, the non linear behaviour of RC structural elements taking into account stiffness degradation, strength deterioration, and pinching effect. Results show when simplified analyses are in good agreement with NLDAs. As a consequence, unsatisfactory results from simplified analysis are pointed out to address their current applicability limits.

Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis (지진취약도를 통한 철골모멘트골조의 연간 손실 평가)

  • Jun, Saemee;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • The ultimate goal of seismic design is to reduce the probable losses or damages occurred during an expected earthquake event. To achieve this goal, this study represents a procedure that can estimate annual loss probability of a structure damaged by strong ground motion. First of all, probabilistic seismic performance assessment should be performed using seismic fragility analyses that are presented by a cumulative distribution function of the probability in each exceedance structural damage state. A seismic hazard curve is then derived from an annual frequency of exccedance per each ground motion intensity. An annual loss probability function is combined with seismic fragility analysis results and seismic hazard curves. In this paper, annual loss probabilities are estimated by the structural fragility curve of steel moment-resisting frames(SMRFs) in San Francisco Bay, USA, and are compared with loss estimation results obtained from the HAZUS methodology. It is investigated from the comparison that seismic losses of the SMRFs calculated from the HAZUS method are conservatively estimated. The procedure presented in this study could be effectively used for future studies related with structural seismic performance assessment and annual loss probability estimation.

Seismic risk investigation for reinforced concrete buildings in Antalya, Turkey

  • Kepenek, Engin;Korkmaz, Kasim A.;Gencel, Ziya
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.203-211
    • /
    • 2020
  • Turkey is located in one of the most seismically active regions of in Europe. The majority of the population living in big cities are at high seismic risk due to insufficient structural resistance of the existing buildings. Such a seismic risk brings the need for a comprehensive seismic evaluation based on the risk analysis in Turkey. Determining the seismic resistance level of existing building stock against the earthquakes is the first step to reduce the damages in a possible earthquake. Recently in January 2020, the Elazig earthquake brought the importance of the issue again in the public. However, the excessive amount of building stock, labor, and resource problems made the implementation phase almost impossible and revealed the necessity to carry out alternative studies on this issue. This study aims for a detailed investigation of residential buildings in Antalya, Turkey. The approach proposed here can be considered an improved state of building survey methods previously identified in Turkey's Design Code. Antalya, Turkey's fifth most populous city, with a population over 2.5 Million, was investigated as divided into sub-regions to understand the vulnerability, and a threshold value found for the study area. In this study, 26,610 reinforced concrete buildings between 1 to 7 stories in Antalya were examined by using the rapid visual assessment method. A specific threshold value for the city of Antalya was determined with the second level examination and statistical methods carried out in the determined sub-region. With the micro zonation process, regions below the threshold value are defined as the priority areas that need to be examined in detail. The developed methodology can be easily calibrated for application in other cities and can be used to determine new threshold values for those cities.