• Title/Summary/Keyword: earthquake hazard

Search Result 390, Processing Time 0.033 seconds

Seismic characteristics of Tectonic Provinces of The Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.64-71
    • /
    • 1999
  • Seismicity of the Korean Peninsula shows intraplate seismicity that has irregular pattern in both time and space. Seismic data of the Korean peninsula consists of historical earthquakes and instrumental earthquakes. In this study we devide these data into complete part and incomplete part and considering earthquake size uncertainty estimate seismic hazard parameters - activity rate λ, b value of Gutenberg-Richter relation and maximum possible earthquake IMAX by statistical method in each major tectonic provinces. These estimated values are expected to be important input parameters in probabilistic seismic hazard analysis and evaluation of design earthquake.

  • PDF

Liquefaction Hazard Map Based on in Pohang Under Based on Earthquake Scenarios (지진시나리오 기반의 포항지역 액상화위험도 작성 연구)

  • Baek, Woo Hyun;Choi, Jae Soon;Ahn, Jae-Kwang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-224
    • /
    • 2018
  • The The purpose of this study is to investigate the actual liquefaction occurrence site in Pohang area and to analyze the ground characteristics of Pohang area using the data of the National Geotechnical Information DB Center and to calculate the liquefaction potential index. Based on the results, the distribution of soil classification in Pohang area and the risk of liquefaction under various earthquake accelerations were prepared. As a result of the study, soils in Pohang has the soil characteristics that can cause the site amplification phenomenon. In the analysis through liquefaction hazard maps under earthquake scenarios, it is found that the liquefaction occurred in the area of Heunghae town is more likely to be liquefied than other areas in Pohang. From these results, it is expected that the study on the preparation of liquefaction hazard maps will contribute to the preparation of countermeasures against liquefaction by predicting the possibility in the future.

A Note on the Earthquake Double Counting (지진의 이중산입에 대한 소고(小考))

  • Noh, Myunghyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.157-162
    • /
    • 2023
  • As a result of active geological investigation of faults in Korea, many Quaternary faults have been identified and some of them were judged to have potential to generate earthquakes. Those faults need to be considered as additional seismic sources in the seismic hazard analysis. When a fault is introduced as a new source, the earthquakes generated by the fault should be removed from the area sources that include any part of the fault, to avoid double counting. In practice, however, double counting cannot completely be avoided as the complete separation of the fault-generated earthquakes from the area sources is impossible due to uncertainties related to the earthquake location, subsurface structures of faults, etc. When a new fault source is introduced, the only constraint is the invariance of earthquake frequency. The maximum earthquake and the Richter-b value should also be subject to change, but there are no competent approaches to estimate the change due to incomplete separation of earthquakes. To gain insight into the effect of a new fault source, an example calculation of the seismic hazard were carried out. The example calculation shows that addition of a new fault source centers seismic hazard around the fault source.

The Impact of Earthquake on Apartment Price - Focused on Gyeongju Earthquake Case in South Korea - (지진 발생이 아파트 가격에 미치는 영향 - 2016년 9월 12일 경주 지진 사례를 중심으로 -)

  • Yeom, Jae-Weon;Jung, Ju-Chul
    • Journal of Korea Planning Association
    • /
    • v.54 no.1
    • /
    • pp.148-158
    • /
    • 2019
  • The purpose of this study is to analyze the impact of earthquake on apartment prices. Many studies have been done analyzing the relationship between natural hazards and residential property prices. Most studies have shown that natural hazards have an negative effect on residential property prices, but some studies have shown that natural hazards have an positive effect on residential property prices. These conflicting analysis result from the lack of considering natural hazard frequency at the analysis site. According to literature reviews risk avoidance tendency are already inherent in prices, thus distorting the relationship between natural hazards and prices. That is, in order to analyze the impact of natural hazards on residential property prices, analysis must be carried out in areas where there has not suffered natural hazard for a long time or where there has been no damage before. Nevertheless, previous studies analyzed areas frequently affected by natural hazards. Gyeongju has been recognized as a safe area from earthquake in the past, an 5.8 magnitude earthquake occurred in September 2016. Analysis results focusing on Gyeongju Earthquake case has shown that the earthquake has affected decrease of apartment prices in hazardous areas, and after earthquake apartment prices have risen over time.

Application into Assessment of Liquefaction Hazard and Geotechnical Vulnerability During Earthquake with High-Precision Spatial-Ground Model for a City Development Area (도시개발 영역 고정밀 공간지반모델의 지진 시 액상화 재해 및 지반 취약성 평가 활용)

  • Kim, Han-Saem;Sun, Chang-Guk;Ha, Ik-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-230
    • /
    • 2023
  • This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m × 5 m × 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.

Development of Seismic Hazard Analysis Technique and the Determination of Design Earthquake (지진위험도해석기법과 설계지진결정 연구)

  • Oh, Byung Hwan;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.29-42
    • /
    • 1992
  • Presented is a study on the development of seismic hazard analysis techniques to determine a reasonable design earthquake. To this end, the methods of seismic hazard analysis are first derived and the earthquake occurrence models are established. The present method yields the appropriate level of seismic hazard for any specific site. The characteristics of each hazard model are compared. The seismic hazards for several important sites where some nuclear power plants were installed are evaluated on the basis of the present models. The present study allows more realistic determination of design earthquakes at any specific sites for the design of major structures.

  • PDF

Computation of Uniform Hazard Spectrum for Wolsong Nuclear Power Plants. (월성 원전 부지의 등재해도 스펙트럼 계산)

  • 신진수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.297-303
    • /
    • 1998
  • The uniform hazard spectrum of Wolsong Nuclear Power plant Site is computed in order to estimate probabilistically the characteristics of spectral ground response. The spectral hazard values calculated from the seismic zoning maps proposed by eight seismologist are combined with equal weight to produce a uniform hazard spectrum. The uniform hazardd spectra corresponding to reference probabilities of 1.0 $\times$10-4/year and 1.0$\times$10-5/year are presented, which largely depend on the spectral attenuation relation. The computational results of this study contribute to verify the conservatism of the design ground spectrum of Wolsong Nuclear Power Plant.

  • PDF

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

New fuzzy method in choosing Ground Motion Prediction Equation (GMPE) in probabilistic seismic hazard analysis

  • Mahmoudi, Mostafa;Shayanfar, MohsenAli;Barkhordari, Mohammad Ali;Jahani, Ehsan
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.389-408
    • /
    • 2016
  • Recently, seismic hazard analysis has become a very significant issue. New systems and available data have been also developed that could help scientists to explain the earthquakes phenomena and its physics. Scientists have begun to accept the role of uncertainty in earthquake issues and seismic hazard analysis. However, handling the existing uncertainty is still an important problem and lack of data causes difficulties in precisely quantifying uncertainty. Ground Motion Prediction Equation (GMPE) values are usually obtained in a statistical method: regression analysis. Each of these GMPEs uses the preliminary data of the selected earthquake. In this paper, a new fuzzy method was proposed to select suitable GMPE at every intensity (earthquake magnitude) and distance (site distance to fault) according to preliminary data aggregation in their area using ${\alpha}$ cut. The results showed that the use of this method as a GMPE could make a significant difference in probabilistic seismic hazard analysis (PSHA) results instead of selecting one equation or using logic tree. Also, a practical example of this new method was described in Iran as one of the world's earthquake-prone areas.

Researches Related to Seismic Hazard Mitigation in Taiwan

  • Loh, Chin-Hsiung;Yeh, Chin-Hsun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.13-26
    • /
    • 1998
  • In view of the rapid development of economics and technology, perilous meteorological and geological conditions often cause natural disasters and result in severe loss of lives and properties in Taiwan. To promote multi-hazard mitigation strategies in an integrated a, pp.oach, the National Science Council established a National Science and Technology Program for Disaster Mitigation in January 1998. This program emphasizes on the implementation of research results in the National Disaster Management System. This paper describes the earthquake loss estimation methodology that is currently developed in Taiwan. Topics of potential earth science hazards (PESH) and building vulnerability analysis are described in detail.

  • PDF