• 제목/요약/키워드: earthquake force

검색결과 689건 처리시간 0.025초

경주 9.12지진의 피해 및 비구조요소 내진설계기준 (Damage of Gyeongju 9.12 Earthquakes and Seismic Design Criteria for Nonstructural Elements)

  • 이수현;조태구;임환택;최병정
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.561-567
    • /
    • 2016
  • After the Gyeong-ju 9.12 earthquake, we found the necessity of seismic design of nonstructural element is important to reduce damages in view of properties and economic losses. This study focused on the investigation of damages including both properties and human beings. It was found that most of the damages are leaking of water pipe line, rupture of glasses, spalling of roof finishing, cracks of building, and falling from roof. It was also found that the seismic design force of nonstructural elements is taking account into the natural periods, amplification factors, response modification factors to forsee inelastic behaviors. From this studies, it is recommended that more studies are necessary on the seismic design force of nonstructural element.

면진구조물의 기초전단력에 대한 실험적 평가 (Experimental Evaluation on the Base Shear Force of a Bas Isolation System)

  • 김영중
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.169-177
    • /
    • 1999
  • The base shear force and the overturning moment are important factors for the earthquake design of a structure. These should be predicted exactly especially when the nonlinear seismic isolation bearings are used against earthquake motions. Generally these are derived by the acceleration responses of a structure with the he assumed masses. However these can be contaminated by the noise in the measured responses and the uncertainty of assumed masses. This paper presents the results of the derived base shear force and overturning moment compared with the measured results by multi-axis load cells. Also discussions are made on the cross-coupling effects of the multi-axis load cell.

  • PDF

파랑하중 및 지진하중을 받는 Steel Jacket의 동적해석 (Dynamic Analysis of the Steel Jacket under Wave Force and Earthquake Force)

  • 김문영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.284-291
    • /
    • 1999
  • The reliability analysis is of great importance in their design since offshore towers are high-cost and high-risk structures. The design of platforms in the marine environment depends on results of the dynamic behavior of the structure during earthquakes and storm wave conditions. this paper presents results of an analytical study on evaluating dynamic response of steel jacket modelled by space frame elements. program $\boxDr$OFSPC$\boxUl$for the linear and nonlinear dynamic analysis of steel jacket platform has been developed using FORTRAN 90 programing language through the present study. Free vibration and dynamic behavior of steel jackets under regular and irregular wave and earthquake force are investigated using this program

  • PDF

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Structural Integrity of PWR Fuel Assembly for Earthquake

  • Jhung, M.J.
    • Nuclear Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.212-221
    • /
    • 1998
  • In the present study, a method for the dynamic analysis of a reactor core is developed. Peak responses for the motions induced from earthquake are obtained for a core model. The dynamic responses such as fuel assembly shear force, bending moment, axial force and displacement, and spacer grid impact loads are investigated. Prediction of fuel assembly stress during an earthquake requires development of a fuel assembly stress analysis model capable of interfacing with the models and results discussed in the dynamic analysis of a reactor core. This analysis uses beam characteristics which describe the overall fuel assembly response. The stress analysis method and its application for the case of an increased seismic level are also presented.

  • PDF

지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가 (A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

사장교의 내진설계를 위한 동적해석에 관한 연구 (A Study on Dynaniic Analysis for Earthquake Design of cable-stayed Bridges)

  • 이진휴;이재영;이장춘
    • 한국농공학회지
    • /
    • 제36권1호
    • /
    • pp.103-115
    • /
    • 1994
  • The dynamic earthquake analysis of plane cable-stayed bridge structures was formulated and implemented into a computer program which analyzes plane cable-stayed bridge structu- res subjected to initial cable tensions, member dead and live loads and seismic loads. Cable-stayed bridges were modelled as multi-degrees of freedom systems with lumped- mass. Various earthquake responses such as dynamic deflection, bending moment, shear force and cable tension were investigated by the dynamic analyses in the form of the time history analysis. The time history analysis was based on the mode superposition method. The study revealed that Fan-l type cable-syayed bridges is generally superior to other types for the earthquake proof even though aspects of deflection and section force of each type presents respective advantages and disadvantages. The study provided a method to design the sections of cable-stayed bridges under seismic loads with various design parameters related to structural types. The study is expected to be useful for effective design of cable-stayed bridges with conside- ration of earthquake.

  • PDF

KBC 비구조요소 내진설계 하중 (KBC Seismic Design Force for Nonstructural Element)

  • 김대곤
    • 한국공간구조학회논문집
    • /
    • 제14권1호
    • /
    • pp.77-84
    • /
    • 2014
  • Simple 3, 10, and 30-story buildings with a nonstructural element which is located at roof or near the middle of the building height are selected. Based on 2009 Korean Building Code, the seismic design force applied at the nonstructural element is evaluated. Response spectrum analysis is conducted with the design response acceleration spectrum of 2009 Korean Building Code and the analytical response is compared with the seismic design force from the Code. Furthermore, an artificial earthquake based on Korean design response acceleration spectrum and the 50% intensity of El Centro earthquake, which can be considered as the maximum future earthquake possibly occurring in Korea, are selected to conduct time history analysis. When the period of the nonstructural element is shorter than 0.06 second or longer than that of the 1st period of each building, the Code equations of seismic design force for nonstructural element seems to be appropriate. However, the period of the nonstructural element is close to the one of the building's higher mode periods including the 1st period, seismic force of the nonstructural element might exceed the Code specified seismic design force.

Prediction of force reduction factor (R) of prefabricated industrial buildings using neural networks

  • Arslan, M. Hakan;Ceylan, Murat;Kaltakci, Yaspr M.;Ozbay, Yuksel;Gulay, Fatma Gulten
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.117-134
    • /
    • 2007
  • The force (load) reduction factor, R, which is one of the most important parameters in earthquake load calculation, is independent of the dimensions of the structure but is defined on the basis of the load bearing system of the structure as defined in earthquake codes. Significant damages and failures were experienced on prefabricated reinforced concrete structures during the last three major earthquakes in Turkey (Adana 1998, Kocaeli 1999, Duzce 1999) and the experts are still discussing the main reasons of those failures. Most of them agreed that they resulted mainly from the earthquake force reduction factor, R that is incorrectly selected during design processes, in addition to all other detailing errors. Thus this wide spread damages caused by the earthquake to prefabricated structures aroused suspicion about the correctness of the R coefficient recommended in the current Turkish Earthquake Codes (TEC - 98). In this study, an attempt was made for an approximate determination of R coefficient for widely utilized prefabricated structure types (single-floor single-span) with variable dimensions. According to the selecting variable dimensions, 140 sample frames were computed using pushover analysis. The force reduction factor R was calculated by load-displacement curves obtained pushover analysis for each frame. Then, formulated artificial neural network method was trained by using 107 of the 140 sample frames. For the training various algorithms were used. The method was applied and used for the prediction of the R rest 33 frames with about 92% accuracy. The paper also aims at proposing the authorities to change the R coefficient values predicted in TEC - 98 for prefabricated concrete structures.

전달함수를 이용한 펌프(50Hp)의 진동가진력 산정 (Estimation of Pump Induced Vibration Force Using Transfer Function)

  • 노병철
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.157-162
    • /
    • 1998
  • Dynamic loads may arise from rotating parte of pump if they are insufficiently balanced. The magnitude of pump induced vibrations varies according to the weight, eccentricity, and unbalanced mass of pump. This is a study to estimate the pump induced vibration in time and frequency domain by transfer function. The transfer function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response and transfer function by complex calculation. The amplitudes and components of 50Hp pump vibration force are suggested.

  • PDF