• Title/Summary/Keyword: earthquake effect

Search Result 1,241, Processing Time 0.025 seconds

Estimation of seismic effective energy based parameter

  • Nemutlu, Omer Faruk;Sari, Ali;Balun, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.785-799
    • /
    • 2022
  • The effect of earthquakes in earthquake resistant structure design stages is influenced by the highest ground acceleration value, which is generally a strength-based approach in seismic codes. In this context, an energy-oriented approach can be suggested as an alternative to evaluate structure demands. Contrary to the strength-based approach, the strength and displacement demands of the structure cannot be evaluated separately, but can be evaluated together. In addition, in the energy-oriented approach, not only the maximum effects of earthquakes are taken into account, but also the duration of the earthquake. In this respect, it can be said that the use of energy-oriented earthquake parameters is a more rational approach besides being an alternative. In this study, strength and energy-oriented approaches of earthquake parameters of 11 different periods of single degree of freedom systems were evaluated over 28 different earthquake situations. The energy spectra intended to be an alternative to the traditional acceleration spectra were created using the acceleration parameter equivalent to the input energy. Two new energy parameters, which take into account the effective duration of the earthquake, are proposed, and the relationship between the strength-oriented spectral acceleration parameters and the energy parameters used in the literature is examined by correlation study. According to the results obtained, it has been seen that energy oriented earthquake parameters, which give close values in similar period situations, will be a good alternative to strength oriented earthquake parameters. It was observed that the energy parameters were affected by the effective duration of the earthquake, unlike the strength-based parameters. It has been revealed that the newly proposed energy parameters considering the effective duration give good correlations. Finally, it was concluded that the energy parameters can be used in the design, and the newly proposed effective energy parameters can shorten the analysis durations.

Directional and Orthogonal Effects of Seismic Loads on Design Member Forces (설계부재력에 대한 지진하중의 방향 및 직교성 영향)

  • Ko, Dong-Woo;Jeong, Seong-Wook;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.51-58
    • /
    • 2005
  • Many RC building structures of multiple uses constructed in Korea have the Irregularities of torsion and soft story at bottom stories simultaneously. Seismic design codes generally require dynamic analysis and to take into account the effect or earthquake excitations in the orthogonal direction using the approximate methods of 100/30 and SRSS for type of building structures. And ail buildings should be designed to be safe in any direction of earthquake input. But, most of designers have difficulty in considering the orthogonal and directional effect of earthquake. The objective of the study stated herein is to verily 1) the effect of the choice of the reference axes on the seismic design member forces by comparing the analytical results on member forces using the principal axes suggested by Wilson and the global axes generally adopted in design office, 2) the validity or the 100/30 and SRSS methods by comparing the member forces obtained through linear elastic time history analysis with those obtained through using response spectrum analysis and 100/30 (or SRSS) methods. Based on the observations on the analytical results, it is concluded as follows; 1) The values of member forces by principal axes can be about $15\%$ smaller than those by the global axes in the example structure. 2) Though the values of member forces given by time history analysis are generally within the peak values predicted by 100/30 and SRSS methods, many member force vectors $(P,\;M_y,\;and\;M_z)$ by lime history analysis were located outside the boundaries predicted by the approximate method such as the 100/30 method.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Soil-structure interaction vs Site effect for seismic design of tall buildings on soft soil

  • Fatahi, Behzad;Tabatabaiefar, S. Hamid Reza;Samali, Bijan
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.293-320
    • /
    • 2014
  • In this study, in order to evaluate adequacy of considering local site effect, excluding soil-structure interaction (SSI) effects in inelastic dynamic analysis and design of mid-rise moment resisting building frames, three structural models including 5, 10, and 15 storey buildings are simulated in conjunction with two soil types with the shear wave velocities less than 600 m/s, representing soil classes $D_e$ and $E_e$ according to the classification of AS1170.4-2007 (Earthquake actions in Australia) having 30 m bedrock depth. Structural sections of the selected frames were designed according to AS3600:2009 (Australian Standard for Concrete Structures) after undertaking inelastic dynamic analysis under the influence of four different earthquake ground motions. Then the above mentioned frames were analysed under three different boundary conditions: (i) fixed base under direct influence of earthquake records; (ii) fixed base considering local site effect modifying the earthquake record only; and (iii) flexible-base (considering full soil-structure interaction). The results of the analyses in terms of base shears and structural drifts for the above mentioned boundary conditions are compared and discussed. It is concluded that the conventional inelastic design procedure by only including the local site effect excluding SSI cannot adequately guarantee the structural safety for mid-rise moment resisting buildings higher than 5 storeys resting on soft soil deposits.

Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Effect of Boundary Conditions on failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Soil-Tunnel Interaction and Isolation Effect During Earthquakes (지진시 지반-터널 상호작용 및 면진효과)

  • 김대상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.107-115
    • /
    • 2000
  • 충적지반에 건설된 원형 단면을 갖는 터널은 지진시에 지반의 전단 변형의 영향을 받아 좌우교차로 경사진 타원형상의 변형을 반복한다. 본 논문에서는 이 특별한 진동모드를 이용하여 지반-터널계의 상호작용 및 면진 효과가 검토되었다. 지반과 터널의 경계가 완전히 결합되어 있는 경우에 대한 지반 -터널계의 상호작용 효과 및 지하 구조물의 지진피해를 줄이는 한가지 방법으로써 터널 주위를 면진재로 피복하는 방법에 대한 면진효과가 토론되었다. 그 결과 면진재의 포아송비를 작게 하거나 지반과 면진재의 전단탄성계수의 비를 증가시킴으로서 면진 효가가 증가함을 알 수 있었다.

  • PDF

Groundborne Vibration from Moving Train Loads in Tunnels Considering the Effect of Joints (터널내 열차주행시 절리영향을 고려한 지반진동)

  • 이종세;최기석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.174-181
    • /
    • 2003
  • The groundborne vibration from moving train loads in tunnels could cause damages on structures and make people uneasy. With an aim at developing basis for effective screening measures, this paper attempts to study the characteristics of propagation and attenuation of groundborne vibration from moving train loads in tunnels considering the effect of joints. The wave propagation problem is modeled by a commercial code FLAC and the results are compared to those from using a finite-element-based code DIANA. It is shown that the groundborne vibration is affected significantly by the location and direction of joints.

  • PDF

Numerical Simulation of Tsunamis that Affected the Coastal Zone of East Sea (동해연안에 영향을 미친 지진해일의 수치시뮬레이션)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Kwang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.72-80
    • /
    • 2007
  • The tsunami that resulted from the Central East sea Earthquake, which registered 7.7 on the Richter scale, that occurred over the entire water region in Akita on May. 26, 1983 and the tsunami that was triggered by the Southwest off Hokkaido Earthquake (7.8 on the Richter scale) that occurred in Southwest off Hokkaido on July 12, 1993 are representative cases that led to considerable damage in life and property, not only in Japan but also in Korea. In this study, multi-grid method was used in order to reproduce sufficiently the shoaling effect that occurs as water depth becomes shallow in the shallow water region and moving boundary condition was introduced to consider the runup in the coastal region. For the tsunamis that exerted considerable effect on the East Sea coast of Korea that were caused by the Central East Sea Earthquake in 1983 and the Southwest off Hokkaido Earthquake in 1993, characteristics like water level rise and propagation in the East Sea coast will be examined using numerical simulations. At the same time, these values will be compared with observed values. In addition, maximum water level rise and change in the water level with respect to time that were caused by the tsunamis were examined at each location along the East sea coast. Usefulness of numerical analysis was verified by comparing with observed values.

Inelastic Hysteretic Characteristics of Demand Spectrum -Focused on Elasto Perfectly Plastic Model- (요구스펙트럼의 비탄성이력특성 -완전탄소성모델을 중심으로-)

  • 이현호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.367-374
    • /
    • 2000
  • This study investigates the effect of hysteretic characteristics to the Inelastic Demand Spectrum (IDS) which was expressed by an acceleration(Sa) and a displacement response spectrum (Sd). Elasto Perfectly Plastic(EPP) model is used in this study and inelastic demand spectrum (Sa vs, Sd) are obtained from a given target ductility ratio. For a given target ductility ratio IDS can be obtained by using nonlinear time history analysis of single degree of system with forth five recorded earthquake ground motions for stiff soil site. The effect EPP model under demand spectrum is investigated by ductility factor and natural frequency. According to the results obtained in this study IDS has dependency on ductility factor and natural frequency.

  • PDF