• Title/Summary/Keyword: earthquake damage potential

Search Result 99, Processing Time 0.022 seconds

Structural damage potentials and design implications of 2016 Gyeongju and 2017 Pohang earthquakes in Korea

  • Lee, Cheol-Ho;Park, Ji-Hun;Kim, Sung-Yong;Kim, Dong-Kwan;Jun, Su-Chan
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.305-318
    • /
    • 2022
  • This paper presents a comparative study of the damage potentials for the 2016 Gyeongju and 2017 Pohang earthquakes in Korea. Plausible technical explanations are provided for the more severe damage observed in the 2017 Pohang earthquake in spite of its relatively weaker magnitude and intensity measures based on the response analysis of elastic and inelastic single-degree-of-freedom systems for the recorded ground motions. In addition, a detailed case study was conducted for a fatally damaged piloti building with an eccentric shear wall core based on nonlinear dynamic analysis using the input ground motions modified for the building site.

Application and Verification of Liquefaction Potential Index in Liquefaction Potential Assessment of Korean Port and Harbor (국내 항만 및 어항시설의 액상화 평가에 있어서 액상화 가능성 지수의 적용성 검토)

  • Choi, Jae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.33-46
    • /
    • 2021
  • After the Gyeongju earthquake, which was the largest in the history of measuring instruments in Korea in 2016, and after the Pohang earthquake, where the pillars of pallet structures were destroyed in 2017, the seismic design standards for all domestic facilities have been revised and supplemented. In particular, during the investigation of the Pohang Earthquake damage cases, liquefaction damage that occurs mainly in countries with strong earthquakes such as the United States, Japan, and New Zealand was found, so studies are being conducted in depth to improve seismic design standards. In this study, the liquefaction potential assessment in the recently revised seismic design standard for port and harbor was reviewed, and an applicability review was conducted focusing on the newly cited liquefaction potential index (LPI). At this time, by varying the thickness and location of the sandy soil where liquefaction can occur, the LPIs for various cases were calculated and compared. Also, 22 LPI values in the practical port area were compared and reviewed along with performance of the liquefaction assessment based on the site response analysis using the boring-hole data of the actual 22 port sites.

Earthquake-induced Liquefaction Areas and Safety Assessment of Facilities (지진으로 인한 액상화 지역 및 시설물 안정성 평가)

  • Jeon, Sang-Soo;Heo, DaeYang;Lee, Sang-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.133-143
    • /
    • 2018
  • Liquefaction is one of secondary damages after earthquake and has been rarely reported until earthquake except Mw = 5.4 15 November 2017 Pohang earthquake in Korea. In recent years, Mw = 5.8 12 September 2016 Gyeongju earthquake and Mw = 5.4 15 November 2017 Pohang earthquake, which induced liquefaction, occurred in fault zone of Yangsan City located at south-eastern part of Korea. This explains that Korea is not safe against liquefaction induced by earthquake. In this study, the distance between the centroid of administrative district and the epicenter located at Yangsan fault, peak ground velocity (PGA) induced by both Mw = 5.0 and 6.5, and liquefaction potential index (LPI), which is calculated by using groundwater level and standard penetration test results of 274 in the area of Gimhae city located in adjacent to Nakdong river and across Yangsan fault, have been estimated and then kriging method using geographical information systems has been used to evaluate liquefaction effects on the damage of facilities. This study presents that Mw = 5.0 earthquake induces a small and low level of liquefaction resulting in slight damage of facilities but Mw = 6.5 earthquake induces a large and high level of liquefaction resulting in severe damage of facilities.

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

Computer vision and deep learning-based post-earthquake intelligent assessment of engineering structures: Technological status and challenges

  • T. Jin;X.W. Ye;W.M. Que;S.Y. Ma
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ever since ancient times, earthquakes have been a major threat to the civil infrastructures and the safety of human beings. The majority of casualties in earthquake disasters are caused by the damaged civil infrastructures but not by the earthquake itself. Therefore, the efficient and accurate post-earthquake assessment of the conditions of structural damage has been an urgent need for human society. Traditional ways for post-earthquake structural assessment rely heavily on field investigation by experienced experts, yet, it is inevitably subjective and inefficient. Structural response data are also applied to assess the damage; however, it requires mounted sensor networks in advance and it is not intuitional. As many types of damaged states of structures are visible, computer vision-based post-earthquake structural assessment has attracted great attention among the engineers and scholars. With the development of image acquisition sensors, computing resources and deep learning algorithms, deep learning-based post-earthquake structural assessment has gradually shown potential in dealing with image acquisition and processing tasks. This paper comprehensively reviews the state-of-the-art studies of deep learning-based post-earthquake structural assessment in recent years. The conventional way of image processing and machine learning-based structural assessment are presented briefly. The workflow of the methodology for computer vision and deep learning-based post-earthquake structural assessment was introduced. Then, applications of assessment for multiple civil infrastructures are presented in detail. Finally, the challenges of current studies are summarized for reference in future works to improve the efficiency, robustness and accuracy in this field.

Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks

  • Kostinakis, Konstantinos G.;Morfidis, Konstantinos E.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.295-309
    • /
    • 2020
  • The construction of Reinforced Concrete (R/C) buildings with unreinforced masonry infills is part of the traditional building practice in many countries with regions of high seismicity throughout the world. When these buildings are subjected to seismic motions the presence of masonry infills and especially their configuration can highly influence the seismic damage state. The capability to avoid configurations of masonry infills prone to seismic damage at the stage of initial architectural concept would be significantly definitive in the context of Performance-Based Earthquake Engineering. Along these lines, the present paper investigates the potential of instant prediction of the damage response of R/C buildings with various configurations of masonry infills utilizing Artificial Neural Networks (ANNs). To this end, Multilayer Feedforward Perceptron networks are utilized and the problem is formulated as pattern recognition problem. The ANNs' training data-set is created by means of Nonlinear Time History Analyses of 5 R/C buildings with a large number of different masonry infills' distributions, which are subjected to 65 earthquakes. The structural damage is expressed in terms of the Maximum Interstorey Drift Ratio. The most significant conclusion which is extracted is that the ANNs can reliably estimate the influence of masonry infills' configurations on the seismic damage level of R/C buildings incorporating their optimum design.

Investigation of short column effect of RC buildings: failure and prevention

  • Cagatay, Ismail H.;Beklen, Caner;Mosalam, Khalid M.
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • If an infill wall in a reinforced concrete frame is shorter than the column height and there is no initial gap between the column and the infill wall, the short column effect can occur during an earthquake shaking. This form of damage is frequently observed in many earthquake-damaged buildings all around the world and especially in Turkey. In this study, an effective method, which consists of placing additional infill wall segments surrounding the short column, to prevent this type of failure is examined. The influence of adding infill wall in the reduction of the shear force in the short column is also investigated. A parametric study is carried out for one-storey infilled frames with one to five bays using the percentage of the additional infill wall surrounding the short column and the number of spans as the parameters. Then the investigation is extended to a case of a multistorey building damaged due to short column effect during the 1998 Adana-Ceyhan earthquake in Turkey. The results show that the addition of the infill walls around the potential short columns is an effective way to significantly reduce the shear force.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

Feasibility study on using crowdsourced smartphones to estimate buildings' natural frequencies during earthquakes

  • Ting-Yu Hsu;Yi-Wen Ke;Yo-Ming Hsieh;Chi-Ting Weng
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • After an earthquake, information regarding potential damage to buildings close to the epicenter is very important during the initial emergency response. This study proposes the use of crowdsourced measured acceleration response data collected from smartphones located within buildings to perform system identification of building structures during earthquake excitations, and the feasibility of the proposed approach is studied. The principal advantage of using crowdsourced smartphone data is the potential to determine the condition of millions of buildings without incurring hardware, installation, and long-term maintenance costs. This study's goal is to assess the feasibility of identifying the lowest fundamental natural frequencies of buildings without knowing the orientations and precise locations of the crowds' smartphones in advance. Both input-output and output-only identification methods are used to identify the lowest fundamental natural frequencies of numerical finite element models of a real building structure. The effects of time synchronization and the orientation alignment between nearby smartphones on the identification results are discussed, and the proposed approach's performance is verified using large-scale shake table tests of a scaled steel building. The presented results illustrate the potential of using crowdsourced smartphone data with the proposed approach to identify the lowest fundamental natural frequencies of building structures, information that should be valuable in making emergency response decisions.