• 제목/요약/키워드: earthquake angle effect

검색결과 49건 처리시간 0.027초

Shear Crack Control for High Strength Reinforced Concrete Beams Considering the Effect of Shear-Span to Depth Ratio of Member

  • Chiu, Chien-Kuo;Ueda, Takao;Chi, Kai-Ning;Chen, Shao-Qian
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.407-424
    • /
    • 2016
  • This study tests ten full-size simple-supported beam specimens with the high-strength reinforcing steel bars (SD685 and SD785) using the four-point loading. The measured compressive strength of the concrete is in the range of 70-100 MPa. The main variable considered in the study is the shear-span to depth ratio. Based on the experimental data that include maximum shear crack width, residual shear crack width, angle of the main crack and shear drift ratio, a simplified equation are proposed to predict the shear deformation of the high-strength reinforced concrete (HSRC) beam member. Besides the post-earthquake damage assessment, these results can also be used to build the performance-based design for HSRC structures. And using the allowable shear stress at the peak maximum shear crack width of 0.4 and 1.0 mm to suggest the design formulas that can ensure service-ability (long-term loading) and reparability (short-term loading) for shear-critical HSRC beam members.

이동 클립을 이용한 건축물 외장재의 구조적 성능에 관한 연구 (A Study on the Structural Performance of the Building Exterior Panel Using the Moving Clips)

  • 곽의신;기창군;이상호;손수덕;이승재
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.29-36
    • /
    • 2017
  • A recent global trend in the increase of earthquake-related disasters has become so frequent as to cause various damages to a wide range of mid- to high-rise buildings. Particularly, more attention is being paid to the effect of horizontal load in high-rise buildings not only on the key structural elements of the structures, but also on the possibility of the secondary damages to them due to the failure of exterior panels, which are non-structural elements, but such damages are difficult to cope with as they may be caused by unexpected changes. The present study examined exterior panels using moving clips to prevent such secondary damages on the non-structural elements and analyzed the structural performance of these exterior panels through the finite element analysis and the shaking table test. The analysis results showed that the exterior panels using moving clips satisfied the structural performance against the allowable story drift of KBC2009 and the safety of the exterior panels was verified by the shake table test.

Simplified analytical solution of tunnel cross section under oblique incident SH wave in layered ground

  • Huifang Li;Mi Zhao;Jingqi Huang;Weizhang Liao;Chao Ma
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.65-79
    • /
    • 2023
  • A simplified analytical solution for seismic response of tunnel cross section in horizontally layered ground subjected to oblique incidence of SH wave is deduced in this paper. The proposed analytical solution consists of two main steps: free-field response in layered field and tunnel response. The free field responses of the layered ground are obtained by one-dimensional finite element method in time domain. The tunnel lining is treated as a thick-wall cylinder to calculate the tunnel response, which subject to free field stress. The analytical solutions are verified by comparing with the dynamic numerical results of two-dimensional ground-lining interaction analysis under earthquake in some common situations, which have a good agreement. Then, the appropriate range of the proposed analytical solution is analyzed, considering the height of the layered ground, the wavelength and incident angle of SH wave. Finally, by using the analytical solutions, the effects of the ground material, burial depth of the tunnel, and lining thickness and the slippage effect at the ground-lining interface on the seismic response of tunnels are investigated. The proposed solution could serve as a useful tool for seismic analysis and design of tunnels in layered ground.

콘크리트 표면차수벽형 석괴댐 정상부 변위에 영향을 미치는 입력물성에 대한 민감도분석 (Sensitivity Analysis on Rockfill Material Parameters Influencing Crest Displacement of Concrete-Faced Rockfill Dam)

  • 하익수;서민우;신동훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.846-853
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam with this input parameter. The rockfill material properties for parametric study were obtained from the results of large scale triaxial tests on 34 rockfill materials in the 22 different sites. From the statistical analysis on these data, some statistical characteristics of rockfill material properties such as property range, distribution characteristics, and correlation between the properties were investigated. based on these characteristics, 27 property combinations were constituted by Latin Hypercube sampling method. Dam crest displacements after construction, impounding, and earthquake loading were evaluated by static and dynamic numerical analysis on each combination. From the sensitivity analysis, it was found that the crest displacement of CFR type dam was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the settlement and horizontal displacement of dam crest logarithmically decreased as the shear modulus increased and the difference between the maximum value and the minimum vale amounted to about 9.5 times in case of settlement and about 10 times in case of horizontal displacement.

  • PDF

다양한 경사를 가지는 제방모형의 지반 증폭 특성 (Dynamic Response Characteristics of Embankment Model for Various Slope Angles)

  • 김호연;김용;이용희;김학성;김대현
    • 한국지반신소재학회논문집
    • /
    • 제19권2호
    • /
    • pp.35-46
    • /
    • 2020
  • 본 연구는 제방모형의 사면 경사에 따른 가속도 증폭특성을 분석하기 위하여 진동대 실험을 수행하였으며, 경계조건의 영향을 최소화할 수 있는 연성토조를 활용하였다. 제방모형의 수직 대 수평 경사는 각각 1:1, 1:1.5, 1:2로 설정되었으며, 위치에 따른 지반증폭을 계측하기 위하여 12개의 가속도계가 축소모형 내부에 매설되었다. 주파수에 따른 지반의 응답을 파악하기 위하여 축소모형에는 다양한 주파수 특성을 갖는 지진동이 가진되었다. 실험 결과, 사면의 경사가 클수록 지반증폭이 더 커짐을 실험적으로 확인하였다. 또한, 본 연구에서 활용된 실험 시스템의 신뢰성을 검토하기 위하여 1차원 지반응답해석 결과와 수평지반 모형에서의 실험 결과를 비교하였다.

Combination rules and critical seismic response of steel buildings modeled as complex MDOF systems

  • Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;de Leon-Escobedo, David;Bojorquez-Mora, Eden;Barraza, Arturo Lopez
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.211-238
    • /
    • 2016
  • The Maximum seismic responses of steel buildings with perimeter moment resisting frames (MRF), modeled as complex MDOF systems, are estimated for several incidence angles of the horizontal components and the critical one is identified. The accuracy of the existing rules to combine the effects of the individual components is also studied. Two and three components are considered. The critical response does not occur for principal components and the corresponding incidence angle varies from one earthquake to another. The critical response can be estimated as 1.40 and 1.10 times that of the principal components, for axial load and interstory shears, respectively. The rules underestimate the axial load but reasonably overestimate the shears. The rules are not always inaccurate in the estimation of the combined response for correlated components. On the other hand, totally uncorrelated (principal) components are not always related to an accurate estimation. The correlation of the individual effects (${\rho}$) may be significant, even for principal components. The rules are not always associated to an inaccurate estimation for large values of ${\rho}$, and small values of ${\rho}$ are not always related to an accurate estimation. Only for perfectly uncorrelated harmonic excitations and elastic analysis of SDOF systems, the individual effects of the components are uncorrelated and the rules accurately estimate the combined response. The degree of correlation of the components, the type of structural system, the response parameter under consideration, the location of the structural member and the level of structural deformation must be considered while estimating the level of underestimation or overestimation.

Shaking table tests on seismic response of backdrop metal ceilings

  • Zhou, Tie G.;Wei, Shuai S.;Zhao, Xiang;Ma, Le W.;Yuan, Yi M.;Luo, Zheng
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.807-819
    • /
    • 2019
  • In recent earthquakes, the failure of ceiling systems has been one of the most widely reported damage and the major cause of functionality interruption in some buildings. In an effort to mitigate this damage, some scholars have studied a series of ceiling systems including plaster ceilings and mineral wool ceilings. But few studies have involved the backdrop metal ceiling used in some important constructions with higher rigidity and frequency such as the main control area of nuclear power plants. Therefore, in order to evaluate its seismic performance, a full-scale backdrop metal ceiling system, including steel runners and metal panels, was designed, fabricated and installed in a steel frame in this study. And the backdrop metal ceiling system with two perimeter attachments variants was tested: (i) the ends of the runners were connected with the angle steel to form an effective lateral constraint around the backdrop metal ceiling, (ii) the perimeter attachments of the main runner were retained, but the perimeter attachments of the cross runner were removed. In the experiments, different damage of the backdrop metal ceiling system was observed in detail under various earthquakes. Results showed that the backdrop metal ceiling had good integrity and excellent seismic performance. And the perimeter attachments of the cross runner had an adverse effect on the seismic performance of the backdrop metal ceiling under earthquakes. Meanwhile, a series of seismic construction measures and several suggestions that need to be paid attention were proposed in the text so that the backdrop metal ceiling can be better applied in the main control area of nuclear power plants and other important engineering projects.

강재 슬래브 이력형 댐퍼(SSHD)를 이용한 중·저층 RC 격자 구조물의 내진성능 향상에 관한 연구 (A Study on the Seismic Performance Improvement of Mid and Low-Rise RC Grid Structures Using Steel Slab Hysteretic Damper)

  • 김동백;이인덕;최정호
    • 한국재난정보학회 논문집
    • /
    • 제15권3호
    • /
    • pp.418-426
    • /
    • 2019
  • 연구목적: 내진성능이 부족한 중 저층의 RC 격자 구조물의 내진능력을 해석한 후, 보와 기둥의 내진성능 개선을 위해 강재 슬래브 이력형 댐퍼(SSHD)를 설치하고, 지진이 발생할 때 구조물의 손상 및 인적피해를 최소화 하는 방안을 제시하는 데 그 목적이 있다. 연구방법: 내진설계가 되지 않은 격자 형태의 전철 역사를 대상으로 내진성능을 파악하고, 내진성능이 부족할 경우 공기를 최소화 할 수 있는 방법인 SSHD 시스템을 설치하는 것으로 가정하여 구조물의 내진성능 평가 및 보강을 검토한다. 연구결과: SSHD를 적용하여 구조물을 보강한 후, 고유치 해석을 수행한 결과 장변방향으로는 0.548s의 고유주기를 나타내었으며, 단변방향으로는 0.593s의 고유주기를 가지고 있는 것으로 나타났다. 결론: SSHD에 대하여 반복하중 실험을 수행 한 결과, 댐퍼의 전단강성은 103%, 에너지소산량은 111% 및 109%로 나타나고, 모든 기둥과 보 부재의 소성회전각은 $I_o$수준을 만족하는 것으로 나타나 보강효과가 충분할 것으로 판단된다.

대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구 (A Study on the Rock Pressure Wedge Failure During Ground Excavation)

  • 이승호
    • 지질공학
    • /
    • 제11권1호
    • /
    • pp.1-11
    • /
    • 2001
  • 우리나라 지질의 특성은 토층의 두께가 얇아서 보통 10m이상만 굴착해도 암반층이 나타나므로 대규모 지하굴착 공사시 암반층에서의 토압분포 산정방법이 절실하게 요구되고 있는 실정이다. 그러나, 암반층 암압산정시 기존의 경험식인 Terzaghi-Peck, Tschebotarioff식 등을 그대로 적용하는 것은 암반층의 점착력을 대부분 무시하게 되므로 실제 강도를 과소 평가하게 된다. 따라서 암반에서의 절리경사각, 절리면 전단강도, 지반 상재하중등을 고려한 쐐기형 블럭(Wedge Block)의 수평활동력을 산정하는것이 실제 암반층 토류구조물에 작용하는 암압과 근접할 것으로 판단된다. 본 연구에서는 뒷채움 흙이 점착력을 갖는 흙인 경우 쐐기형상으로 파괴가 일어난다고 가정하여 Coulomb 토압이론을 확장하여 힘의 평형 조건을 이용해 Prakash-Saran(1963)이론과 절리면의 전단강도 결정공식 $\tau$=c+$\sigma$tan $\Phi$를 적용해서 암반층에 작용하는 암압을 산정하였다. 산정된 이론식을 이용하여 절리면 충전물의 상태 변화에 따른 절리면 전단 강도와 절리경사각을 바꿔가면서 해석해 본 결과, 암반층은 자체의 점착력과 내부마찰각이 크므로 절리방향과 경사각이 굴착면을 향해 어떻게 정해지느냐에 따라서 토압이 작용하기도 하고 작용하지 않을 수도 있다. 본 연구에서 산정된 이론식은 향후 절리면 전단강도 산정시 필요한 강도정수, 절리면의 방위와 상태, 과잉측압, 동적하중, 지진을 비롯한 많은 지반정수(Parameter)들을 보다 엄밀히 산정하고, 특히 암반층에 작용하는 지하수위 효과등을 고려하여, 실제 현장에서 계측된 많은 자료와의 분석을 통해 그 적용성이 검토되어야 할 것으로 판단된다.

  • PDF