• Title/Summary/Keyword: earth science learning

Search Result 588, Processing Time 0.021 seconds

Comparative Analysis of the Earth Science Contents in Science Textbooks between Korea and DPRK (한국과 북한의 과학 교과서에서의 '지구과학' 내용 비교 분석)

  • Kwon, Chi-Soon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.3
    • /
    • pp.276-286
    • /
    • 2012
  • This research is aimed to examine the differences through comparative analysis of the Earth Science contents in the science textbooks between Korea and DPRK. The contents of level and scope in science textbooks between Korea and DPRK are analysed by TIMSS frameworks. The results of this research are as follows : 1. The science textbooks of DPRK is lower in quality of paper, printing to that of Korea, and the illustrations, editing design in the textbooks of DPRK are fewer, monochromic and monotonous while those in Korea. 2. The contents of Earth Science in DPRK's science textbooks rank 37.0%, but those of Korea's science textbooks rank 25.5% of the whole textbooks. The learning units related to Earth Science are generally similar to the level and scope in science textbooks between Korea and DPRK. The type of inquire activities in the textbooks of DPRK largely takes on the model experiment, and it was shown that the number of experiments directly made by children is very small compared to Korea' textbooks. 3. There are lots of differences in Earth Science learning terms and predicates used in the textbooks between Korea and DPRK.

The Effects of the Pre-learning Program Applied by ICT-based TGT (Teams-Games-Tournaments) Cooperative Module for Science Museum Excursion Regarding of the Earth and the Moon on the Science Related Attitude according to Gender (지구와 달 관련 과학관 체험 학습에서 ICT 활용 협동 학습(TGT) 모듈을 적용한 사전 학습 프로그램이 성별에 따라 과학 관련 태도에 미치는 효과)

  • Park, Sun-Heung;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.3
    • /
    • pp.326-340
    • /
    • 2010
  • TGT (teams-games-tournaments) cooperative learning is suggested as a method which enables both the individualized teaching-learning and the small group learning in students-centered open education. This study investigated the instructional effects of the pre-learning program applied by ICT-based TGT cooperative module for science museum excursion regarding of the earth and the moon on the science related attitude according to gender difference in elementary school science class. Three classes of third graders (N=87) at a elementary school were randomly assigned to the ICT-based TGT cooperative learning group, the ICT learning group, and traditional learning group. The students were taught about the planning of exploring the moon in the chapter of the earth and the moon, for 1 class hour. Prior to the instructions, the TOSRA(test of science related attitude) and achievement test were administered. Two-way ANCOVA results revealed that the scores of the ICT-based TGT cooperative learning group were significantly higher than the other learning groups for most of the TOSRA scales. However, there was a little significant difference among the three groups in the three distinct scales of TOSRA, Normality of Scientists, Leisure Interest in Science, and Career Interest in Science. Advantage/disadvantage and usefulness of ICT-based TGT cooperative learning were also discussed.

  • PDF

Applicability Evaluation of Automated Machine Learning and Deep Neural Networks for Arctic Sea Ice Surface Temperature Estimation (북극 해빙표면온도 산출을 위한 Automated Machine Learning과 Deep Neural Network의 적용성 평가)

  • Sungwoo Park;Noh-Hun Seong;Suyoung Sim;Daeseong Jung;Jongho Woo;Nayeon Kim;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1491-1495
    • /
    • 2023
  • This study utilized automated machine learning (AutoML) to calculate Arctic ice surface temperature (IST). AutoML-derived IST exhibited a strong correlation coefficient (R) of 0.97 and a root mean squared error (RMSE) of 2.51K. Comparative analysis with deep neural network (DNN) models revealed that AutoML IST demonstrated good accuracy, particularly when compared to Moderate Resolution Imaging Spectroradiometer (MODIS) IST and ice mass balance (IMB) buoy IST. These findings underscore the effectiveness of AutoML in enhancing IST estimation accuracy under challenging polar conditions.

Exploring the Effects and Implications of Earth Science Unplugged Activities Based on Computational Thinking: Focusing on the Problem Solving of Solid Earth Domain (컴퓨팅 사고력 기반 지구과학 언플러그드 활동의 효과와 시사점 탐색: 고체지구 영역의 문제해결을 중심으로)

  • Hong, Seok-Young
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.80-94
    • /
    • 2021
  • In this study, teaching-learning activities were developed based on computational thinking (CT) in high school Earth Science I Solid Earth domain. And their effects and implications were examined. To this end, 8 sessions unplugged activities based on problem solving were developed, and applied it to 65 high school students. As a results, significant changes have been were confirmed in both student's perception about CT and CT. After that, based on student's responses to self-reports and interview, the affecting factors for perception about CT and CT in the earth science problem solving process were investigated. In addition, implication that should be considered in terms of design and progress of teaching-learning based on CT were derived. Based on these results, the necessity and operation of teaching-learning activities was suggested for developing CT through various subjects including earth science.

Exploring a Learning Progression for Integrated Process Skills in Earth Science Inquiry (지구과학 탐구에서 통합 탐구 기능에 대한 학습발달과정 탐색)

  • Lee, Kiyoung;Park, Jaeyong
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.222-238
    • /
    • 2017
  • The purpose of this study is to explore a learning progression for integrated process skills in Earth science inquiry. For the purpose, a hypothetical learning progression (HLP) that capture how students' integrated process skills of science become sophisticated over time is developed through the literature review. This learning progression contains four components of the integrated process skills of science: designing inquiry, collecting data, analyzing data, and forming conclusion. Three hypothetico-deductive inquiry tasks of Earth science that start from recognition of the given problem to the forming conclusion are developed in order to document students' integrated process skills. A total of 126 students from middle, high, college level students participated in this study. After conducting the Earth science inquiry tasks, the integrated process skills of individual students are assessed by element based on HLP. In addition, the validation process for HLP was administered by applying the Rasch model using the students' assessment data. Finally, based on the analyzed data, the empirical learning progression (ELP) is developed by revising and supplementing the HLP. This study can help to find scaffolding methods to effectively improve the students' integrated process skills in Earth science inquiry class by identifying the factors that affect students' development of integrated process skills. It also provide implications for improving teachers' PCK of Earth science inquiry instruction.

Development and Application of Animation Module for Learning Earthquake in Elementary School Science (초등학교 과학과 지진 학습에 대한 애니메이션 모듈 개발 및 적용)

  • Kim, Sang-Dal;Kim, Jong-Hee;Lee, Yong-Seob
    • Journal of the Korean earth science society
    • /
    • v.25 no.5
    • /
    • pp.293-302
    • /
    • 2004
  • The earthquake education is the area that students have few opportunities to experience directly in elementary school earth science course. Therefore, I have developed an animation module to make students learn about earthquake efficiently satisfying students's interests and characteristics. I have planned to get the effective learning result by teaching 35 elementary students, using the developed module designed for ICT teaching and learning. The result of this study is that the animation module class gives students opportunity and develop students' attitudes towards earth science.

An Analysis of Science Learning Concepts in the 7th Grade Science Textbooks of the 7th Curriculum - on Energy and Earth Field - (제 7차 교육과정의 7학년 과학 교과서에 제시된 과학개념 분석 - 에너지와 지구 영역 중심으로 -)

  • Park, Sang-Tae;Shin, Young-Suk;Lee, Hee-Bok;Yuk, Keun-Chul;Kim, Hee-Soo;Kim, Yeo-Sang
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.276-285
    • /
    • 2002
  • In this study the concepts for science learning of physics and earth science presented in the seventh grade science textbooks for the seventh national curriculum of Korea approved by the ministry of education were analyzed in terms of the concrete and formal concept level. The parts of textbook analyzed for science learning consist of three sections in physics such as light, force, and waves, and three sections in earth science such as the structure of the earth, the substance of crust, and the movement and composition of the ocean. The analyzed results showed that the number of scientific concepts were differed from 54 to 74 in physics and from 86 to 120 in earth science depending upon publishers. In general, the concepts for science learning in the physics were found to be more in the formal level than the concrete level. However, the concepts for science learning in earth science were found to be more in the concrete level than the formal level. The analyzed results suggest that the concepts of science learning should be considered the learner's cognitive level and the sections should be disposed depending on the degree of difficulty for writing the science textbook. Therefore, it seems to be important to review carefully whether the textbook meets the object of the seventh curriculum of Korea during the process of the investigation for the science textbook.

Reaction of Student for the Field Application of ESE Program - Focusing on the Global Climate Game - (지구계교육 프로그램의 적용에 따른 학습자의 반응 - 지구 기후 게임을 중심으로 -)

  • Kang, Hyun-A;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.299-308
    • /
    • 2002
  • While the 7th national education curriculum is gradually proceeding, science education tries various teaching-learning method for integration in science education. The first purpose of this study is to investigate Earth Systems Education(ESE), which is approaching method to integrate science education, especially in its focus on planet Earth. Also, the second purpose is to know what the reactions of students are obtained after 'The Global Climate Game' in ESE active learning program is applied to the field. The results of this study are as follows; ESE is to propose the integrated approaching method of searching for natures and ESE teaching-learning method is to try to overcome fixed conventional teaching-learning method focus on the text book, and practical application of ESE teaching-learning method is that we can develope the student-emphasized instructional program through the discussional cooperation-teaming models, role-play instructional models. In this study, 'The Global Climate Game' found that was suitable of understanding about relating of atmosphere, hydrosphere, lithosphere and biosphere composing Earth System. Reaction of most students for ESE was showed a positive change of aspect affective region and ESE active learning program is more efficient to improve schoolwork achivement and students positive attitude toward science subject than conventional teaching-learning method. Thus if ESE active learning program is applied for a long time, the general positive attitude of students concerning science will be increased, and then the students is expected to extend the ability of application of science in their life.

Exploring Development Achievement of the 2022 Revised High School Earth Science Curriculum to Cultivate Transformative Competency (변혁적 역량 함양을 위한 2022 개정 고등학교 과학과 지구과학 교육과정 개발 성과 탐색)

  • Youngsun Kwak;Jong-Hee Kim;Hyunjong Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.1
    • /
    • pp.49-59
    • /
    • 2024
  • In this study, we investigated the philosophical background and progress of the 2022 revised curriculum development in the high school earth science field. Research that was not covered in the research report includes the relevance of the transformative competency of OECD Education 2030, and that core ideas and achievement standards are organized around knowledge understanding, process functions, and value attitudes that constitute the learning compass needle. In addition, the composition of core ideas and Earth science electives in light of the understanding-centered curriculum, and IB type inquiry-based teaching and learning. Main research results include that the 2022 revised Earth science curriculum emphasized the student agency to foster the transformative competency and scientific literacy, and the curriculum document system in the field of earth science uses a learning compass needle. In addition, based on the understanding-centered curriculum, core ideas of Earth science were derived, and elective courses were organized to help students reach these core ideas. Also, IB-type inquiry-based teaching and learning was emphasized to foster student agency with knowledge construction competency. Based on the research results, slimming of the national and general level curriculum, the need to develop process-centered assessment methods for value and attitudes, the need for curriculum backward design, and ways to develop student agency through inquiry-based teaching and learning were suggested.

Exploring the Perception of Elementary and Secondary Pre-service Teachers about 'Novelty Space' in Learning in Geological Field Trip (야외지질학습에서 '생소한 경험 공간(Novelty Space)'에 대한 초등 예비교사와 중등 지구과학 예비교사들의 인식 탐색)

  • Choi, Yoon-Sung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.27-46
    • /
    • 2022
  • The purpose of this study was to examine the perceptions of novelty space among pre-service elementary and secondary earth science teachers. We conducted a survey to explore the perceptions of 38 pre-service elementary school teachers at the National University of Education and 31 pre-service secondary earth science teachers at the Department of Earth Science Education at B University. Semi-structured interviews were conducted with 12 participants, including three pre-service elementary teachers and nine pre-service secondary science teachers. In addition to the elements of novelty space, prior knowledge (cognition), prior outdoor learning experience (psychology), familiarity (geography) with outdoor field learning, and social and technical elements were added. When classified based on elementary and secondary levels, there were statistically significant differences in cognitive, psychological, geographic, and social areas for the elements of novelty space. Statistical differences indicated that the experience or capital related to outdoor learning may have resulted from more pre-service secondary earth science teachers than pre-service elementary teachers. In additional interviews, both elementary and secondary pre-service teachers reported that competencies in the technical domain would be emphasized in the future owing to the necessity and the technical development of virtual-reality-based outdoor field learning programs. This study emphasizes the academic significance of novelty space that should be considered to conduct geological field learning for elementary and secondary earth science pre-service teachers while considering the current post-pandemic educational context.