• Title/Summary/Keyword: earth retaining wall

Search Result 371, Processing Time 0.022 seconds

Application of Earth Retaining Structure using Soil Cement-mixing Method (교반혼합체 공법의 도심지 흙막이벽 적용)

  • Kim, Young-Seok;Cho, Yong-Sang;Kamg, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.883-887
    • /
    • 2009
  • In this study, a new soil retaining system was proposed by soil cement mixing method. The new soil retaining system is based on deep cement mixing method by large diameter reinforcing blocks (piles). Large diameter reinforcing blocks (usually $\varnothing$300-500 mm) have the advantage to make reinforcements over a relatively short depth and thus reduce the amount of reinforcement necessary. A field case has been reviewed for actual application of the soil retaining system at a downtown site. Research was conducted to evaluate the behavior of the installed soil retaining wall, with reinforcing blocks (400 mm in diameter and 4 m in length) placed into a 10 m excavation wall at a $20^{\circ}$ angle. As a result, the potential for applying this method to the downtown excavation site was confirmed.

  • PDF

Numerical Analysis for Optimal Reinforcement Length Ratio According to Width-to-Height Ratio of Back-to-Back MSE (Back-to-Back 보강토옹벽의 옹벽폭비에 따른 최적 보강길이비 산정을 위한 수치해석적 연구)

  • Park, Choon-Sik;Kim, Dong-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.69-76
    • /
    • 2020
  • Since the mechanically stabilized earth walls have a form of retaining wall compatible with a narrow section, the geogrid overlaps according to the separation distance between the walls. There is a problem that the overall behavior may occur in the state of being integrated with the stress change due to the interaction of the geogrid. Therefore, a careful approach is required at the design stage, but there are currently no design criteria or guidelines in Korea. This study investigated the optimal reinforcement length ratio according to the retaining wall width to height ratio (width to height ratio, Wb/H) for these back-to-back mechanically stabilized earth walls. Retaining wall width ratio is 1.1H, 1.4H, 1.7H, 2.0H for Case II of the FHWA design standard, and the height is 3.0 m, 5.0 m, 7.0 m, and 10.0 m, which are most commonly applied. Through numerical analysis, the appropriateness of the FHWA design standard and the optimal reinforcement length ratio according to the height of the retaining wall and the width of the retaining wall were proposed.

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

Stability Analysis of the Light Weight Earth-Retaining Structure in the Trench Excavation (트렌치 굴착에 있어서 경량 흙막이 구조체의 안정성 해석)

  • Seo , Sung-Tag;Heo , Chang-Han;Kim , Hee-Duck;Jee , Hong-Kee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.93-103
    • /
    • 2004
  • In trench excavation, essential factor of earth-retaining temporary work structure should be easy taking to pieces and movement, and dead weight must be less. This paper studies about the light weight material and application as earth-retaining structure to prevent the slope failure of sand soil ground caused by the variation of groundwater level in trench excavation. That is, light weight earth-retaining structural is proposed and a simulation with FEM on application of proposed structural in sandy soil is presented. The results are summarized as follows; (1) The study proposed FRP H-shaped pannel for the light weight member, and also presented estimation method about stability. (2) Mechanical property (bending moment, shear force, axial force, displacement) were changed according to groundwater level, but these values had been within enough safety rate and allowable stress. Therefore, proposed light weight pannel with FRP is available for bracing structure in trench excavation.

Powell이s Algorithm for Back Analysis of Anchored Wall (파웰의 최적화 기법을 이용한 앵커토류벽의 역해석)

  • 김낙경;박종식;신광연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.271-278
    • /
    • 2002
  • Recently, deep excavation for high-rise buildings occurs frequently to accommodate the rapidly increasing population in urban area. The stability of the earth retaining structures for deep excavation becomes more critical. The behavior of the earth retaining structures should be accurately predicted in a design stage, but the predicted behavior is different from the measured data due to uncertain soil properties and problems in construction. In this study the back-analysis using Powell's optimization theory was performed to match the measured deflection and results obtained from back-analysis were presented.

  • PDF

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

A case Study on Collapse Causes and Restoration of Retaining Wall with Vegetated Concrete Block (식생블록 옹벽의 붕괴원인 및 복구방안에 관한 사례 연구)

  • Hong, Gigwon;You, Seung-Kyong;Yun, Jung-Mann;Park, Jong-Beom;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.105-115
    • /
    • 2016
  • This paper describes a restoration of retaining wall, which was collapsed by rainfall. The failure causes was analyzed by field case, and then the countermeasure was suggested. The failure causes confirmed that observance of design and construction criteria was insufficient. It also was the climate condition like a rainfall and inappropriate construction management. The stability analysis for retaining wall, soil improvement and reinforced earth wall was conducted to confirm validity of the countermeasure. The analysis results showed that the suggested construction method satisfied in required safety factors. Therefore, it should be secured the stability of the structure based on the application of appropriate design method and construction management, when structure was constructed.

A Study on the Waterproofing Performance of Waterproofing Methods for PHC-W Earth Retaining Wall Based on Pressure Chamber Test (PHC-W 흙막이 공법의 차수방안에 관한 차수성능확인을 위한 모형 압력 수조 실험 연구)

  • Choi, Yongkyu;Johannes, Jeanette Odelia;Yun, Daehee;Kim, Chae min;Jeon, Byeong Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.115-125
    • /
    • 2017
  • PHC-W earth retaining wall could be constructed continuously. Various retaining wall methods such as C.I.P. etc. method require separate waterproof method. However, the PHC-W retaining wall method prevents leakage of groundwater by inserting a waterproofing material at connection part between 2 PHC piles. In this study, the experimental study on 3 waterproofing method for PHC-W retaining wall was conducted at the model pressure chamber. In the method using textile with 1-liquid type and 2-liquid type urethane, rapid leak occurred at the pressure of 120 kPa and 140 kPa or more. In the method of textile with grouting, rapid leak occurred at the pressure of 120 kPa or more, however, in this method, the rapid leakage happened at the top part and the bottom part reinforced with urethane.

A Feasibility Analysis on Steel Net Gabion Reinforcement of Reinforced Earth-retaining Wall (자연친화적인 보강토 옹벽의 철판망 gabion 보강재 타당성 분석)

  • Chung, Dae-Seouk
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Steel net gabion is eco-friendly retaining wall structure showing favorable ability to overcome construction and environmental restriction and also to resist corrosion, chemical attack and degradation. This paper is dealt with the applicability of gabion metal net as a substitution of existing strengthening material. Pull out test was carried out to verify the applicability of gabion metal net. According to results, the increase of surcharge loading and horizontal load resulted in a yield of metal net. The stress at the time of yield was in the range of elasticity. Accordingly, gabion metal net can be substituted for existing geogrid and there is a need for experiment and analysis of arrangement direction and durability of gabion steel net.

High MSE wall design on weak foundations

  • Mahmoud Forghani;Ali Komak Panah;Salaheddin Hamidi
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.329-341
    • /
    • 2024
  • Retaining structures are one of the most important elements in the stabilization of excavations and slopes in various engineering projects. Mechanically stabilized earth (MSE) walls are widely used as retaining structures due to their flexibility, easy and economical construction. These benefits are especially prominent for projects built on soft and weak foundation soils, which have relatively low resistance and high compressibility. For high retaining walls on weak foundations, conventional design methods are not cost-effective. Therefore, two alternative solutions for different foundation weakness are proposed in this research: optimized multi-tiered MSE walls and single tier wall with foundation improvement. The cost optimization considers both the construction components and the land price. The results show that the optimal solution depends on several factors, including the foundation strength and more importantly, the land price. For low land price, the optimized multi-tiered wall is more economical, while for high land price (urban areas), the foundation improvement is preferable. As the foundation strength decreases, the foundation improvement becomes inevitable.