• Title/Summary/Keyword: earth observation camera

Search Result 73, Processing Time 0.03 seconds

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

Towards the development of an accurate DEM generation system from KOMPSAT-1 Electro-Optical Camera Data (다목적 실용위성 1호기 EOC카메라 영상으로부터 DEM 추출을 위한 시스템개발에 관한 고찰)

  • Taejung Kim;Heung Kyu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.232-249
    • /
    • 1998
  • The first Korean remote sensing satellite, Korea Multi-Purpose Satellite (KOMPSAT-1), is going to be launched in 1999. This will carry a 7m resolution Electro-Optical Camera (EOC) for earth observation. The primary mission of the KOMPSAT-1 is to acquire stereo imagery over the Korean peninsular for the generation of 1:25,000 scale cartographic maps. For this mission, research is being carried out to assess the possibilities of automated or semi-automated mapping of EOC data and to develop, if necessary, such enabling tools. This paper discusses the issue of automated digital elevation model (DEM) generation from EOC data and identifies some important aspects in developing a DEM generation system from EOC data. This paper also presents the current status of the development work for such a system. The development work will be described in three pares of sensor modelling, stereo matching and DEM interpolation. The performance of the system is shown with a SPOT stereo pair. A DEM generated from commercial software is also presented for comparison. The proposed system seems to generate promising results.

Fabrication and Performance Test of Small Satellite Camera with Focus Mechanism (포커스 메커니즘이 적용된 소형 위성 카메라의 제작 및 성능 실험)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2019
  • The precise alignment between optical components is required in high-resolution earth observation satellites. However, the misalignment of optical components occurs due to external factors such as severe satellite launch environment and space environment. A satellite optical system with a focus mechanism is required to compensate for the image quality degraded by these misalignments. This study designed, fabricated, aligned precisely, and carried out a performance tests for the image quality of the system. The satellite optical camera performance tests were carried out to check the image quality change by operating the focus mechanism and to analyze the satellite optical system MTF by photographing USAF target using the autocollimator. According to the experimental results, the misalignments can be compensated sufficiently with the focus mechanism. Finally the basic data for re-focusing algorithm of the optical system was obtained through this study.

A study of metal aspheric reflector manufacturing in diamond turning machine (다이아몬드 터닝머신을 이용한 금속 비구면 초정밀 절삭특성)

  • Kim, G.H.;Do, C.J.;Hong, K.H.;Rui, B.J.;Won, J.H.;Kim, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.83-87
    • /
    • 2001
  • A 110 mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of $Ra={\lambda}/12({\lambda}=632nm)$ has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

Direct Observation of Crack Tip Stress Field Using the Mechanoluminescence of SrAl2O4:(Eu,Dy,Nd) (SrAl2O4(Eu,Dy,Nd) 압광체를 이용한 균열첨단에서의 응력장 가시화 연구)

  • 김지식;손기선
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.493-497
    • /
    • 2003
  • The present investigation aims at visualizing the crack tip stress field using a mechanoluminescence material. The well known compound $SrAl_2O_4$:$Eu^{2+}$ was adopted as a mechanolurninescence material. Two more trivalent rare-earth elements such as Dy and Nd were taken into consideration as codopants to provide the appropriate trap levels. Samples of a variety of compositions were prepared by varing $Eu^{2+}$, $Dy^{3+}$, and $Nd^{3+}$ doping contents, for which the combinatorial chemistry method was used. In order to search for the optimum composition for the highest mechanoluminescence, the luminescence induced by a compressive device including a CCD camera. In parallel, a compact tension specimen was prepared by mixing the luminescence powders of optimum composition and epoxy resin. Crack initiation from the mechanically machined sharp note tip and its growth during loading were found to be associated with the extent of light emission from $SrAl_2O_4$.

A Search for New Variable Stars in the Open Cluster NGC 129 using a Small Telescope (소형망원경을 이용한 산개성단 NGC 129 영역의 변광성 탐사)

  • Lee, Eun-Jung;Jeon, Young-Beom;Lee, Ho;Park, Hong-Suh
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.87-104
    • /
    • 2007
  • As part of the SPVS (Short-Period Variability Survey) which is a wide-field $(90'{\times}60')$ photometric monitering program at Bohyunsan Optical Astronomy (BOAO), we performed V band time-series CCD photometric observations ofthe young open cluster NGC 129 for 11 nights between October 12, 2004 and November 3, 2005 using the 155mm refractor equipped with $3K{\times}2K$ CCD camera. From the observation we obtained 2400 V band CCD frames and color-magnitude diagram of the cluster. To transform instrumental magnitude to standard magnitude, we applied ensemble normalization technique to all observed time-series data. After the photometric reduction process, we examined variations of 9537 stars. As a result, sixty six of the new variable stars were discovered. To determine the periods of the sevariables, we used DFT(Discrete Fourier Transform) and phase-matching technique. According to light curve shape, period, amplitude and the position on a C-M diagram, we classified these variables as 9 SPB type, 9 ${\delta}$ Scuti type, 29 eclipsing, 17 long term variables. However, two of them were not classified. From this study, we learned that small telescopes could be a very useful tool to observe variable stars in the open cluster in survey program.

CCD Photometry of a δ Scuti Variable HR 2707 (=21 Mon) (δ Scuti형 변광성 HR 2707(=21 Mon)의 CCD 측광)

  • Lee, Ho;Kim, Seung-Lee;Cho, Sung-Il;Park, Hong-Suh
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.670-676
    • /
    • 2006
  • We present a B and V band time-series CCD photometry of ${\delta}$ Scuti type variable star HR 2707. The observation was carried out for 45 nights between November 13, 2001 and February 20, 2002 with a 40 cm telescope equipped with a 1K CCD camera at the Korea National University of Education Optical Astronomy Observatory. Through the time-series CCD photometry we obtained 3011 V band and 6562 B band CCD frames. In some of these data, the V band data obtained for seven nights in January of 2002, had been used as a part of a multi-site campaign by Lopez de Coca et al. (2003). To detect pulsational frequencies, we used Discrete Fourier Transformation (DFT) and linear least square method. We have detected eight resonable pulsational frequencies and compare to previous studies we determine $f_1,\;f_2,\;f_3,\;f_4,\;f_5$ of Lopez do Coca et al. (2003) and $f_4$ for derived from this study are real pulsational frequencies of HR 2707.

대전광역시 도시화 패턴 분석을 위한 원격탐사 자료 처리 및 다중시기 토지이용 현황도 제작

  • Kim, Youn-Soo;Lee, Kwang-Jae;Jeon, Gap-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • The importance of satellite data for numerous applications is stressed by the fact that many countries have given the development of space technologies very high priority. Among these, Korea has established a medium-term space development strategy to promote space development both on a scientific as well as commercial level. As part of this strategy, the first operational earth-observation, multi-purpose satellite(KOMPSAT-1) was launched successfully in December, 1999. The Electro-Optical Camera (EOC) on board of KOMPSAT-1 supplies panchromatic images with a spatial resolution of 6.6m Until April, 2004, it collected over 150.000 images of the Korean Peninsula and the rest of the world. This paper examines the use of remote sensing data to analyze urban growth in the city of Daejeon from 1960 to 2003. By using visual interpretation, land use maps are created.

  • PDF

Online Refocusing Algorithm Considering the Tilting Effect for a Small Satellite Camera (위성 카메라의 틸트 효과를 고려한 온라인 리포커싱 알고리즘)

  • Lee, Da Hyun;Hwang, Jai Hyuk;Hong, Dae Gi
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.64-74
    • /
    • 2018
  • Small high-resolution Earth observation satellites require precise optical alignment at the submicron level. However, misalignments can occur due to the influence of external factors during the launch and operation despite the sufficient alignment processes that take place before the launch. Thus, satellites need to realign their optical elements in orbit in what is known as a refocusing process to compensate for any misalignments. Refocusing algorithms developed for satellites have only considered de-space, which is the most sensitive factor with respect to image quality. However, the existing algorithms can cause correction error when inner and external forces generate tilt amount in an optical system. The present work suggests an improved online refocusing algorithm by considering the tilting effect for application in the case of a de-spaced and tilted optical system. In addition, the algorithm is considered to be efficient in terms of time and cost because it is designed to be used as an online method that does not require ground communication.

On the Experimental Modeling of Focal Plane Compensation Device for Image Stabilization of Small Satellite (소형위성 광학탑재체의 영상안정화를 위한 초점면부 보정장치의 실험적 모델링에 관한 연구)

  • Kang, Myoung-Soo;Hwang, Jai-Hyuk;Bae, Jae-Sung;Park, Jean-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.757-764
    • /
    • 2015
  • Mathematical modeling of focal plane compensation device in the small earth-observation satellite camera has been conducted experimently for compensation of micro-vibration disturbance. The PZT actuators are used as control actuators for compensation device. It is quite difficult to build up mathematical model because of hysteresis characteristic of PZT actuators. Therefore, the compensation device system is assumed as a $2^{nd}$ order linear system and modeled by using MATLAB System Identification Toolbox. It has been found that four linear models of compensation device are needed to meet 10% error in the input frequency range of 0~50Hz. These models describe accurately the dynamics of compensation device in the 4 divided domains of the input frequency range of 0~50Hz, respectively. Micro-vibration disturbance can be compensated by feedback control strategy of switching four models appropriately according to the input frequency.