• 제목/요약/키워드: earth environment

검색결과 2,297건 처리시간 0.028초

매립지 누출위치 실시간 파악을 위한 전극검지법의 적용 사례 (Application of electrical leakage detection method for waste landfill)

  • 한상재;김병일;홍강한;정재현;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.798-804
    • /
    • 2009
  • Damaged liners may be detected by using leakage detection systems. For the reason, many types of leakage detection systems are applied to analyze or detect damages of lining system such as electrical detection method for the landfill sites. However, most of them can be applied in the new landfill construction sites because sensors should be installed in the bottom of liner systems. This paper shows a case study reviewing the development of a fence type leakage detection method, monitoring system and pilot plant test results, so that they can be economically and efficiently applied to actual used or in-use sites without a leakage detection system.

  • PDF

엘니뇨/라니냐 강도 변화에 따른 국지적 풍력자원의 변동 (Analytic Study on the Variation of Regional Wind Resources Associated with the Change of El Niño/La Niña Intensity)

  • 이순환;이화운;김동혁;김민정;김현구
    • 한국지구과학회지
    • /
    • 제32권2호
    • /
    • pp.180-189
    • /
    • 2011
  • 엘니뇨/라니냐의 강도 변화에 따른 한반도의 풍력자원 변동성을 확인하기 위하여 20년간 장기 지상관측자료를 바탕으로 해석적인 분석을 실시하였다. 장기적으로 유라시아 대륙의 풍속 약화경향에도 불구하고 한반도는 최근 10년간 풍속 증가가 약하게 나타났다. 그리고 엘니뇨와 라니냐에 따른 한반도 풍속은 계절적으로 다양한 형태를 나타낸다. 지역적으로 음의 해수면 온도 아노말리를 나타내는 라니냐가 발생하면 한반도내 지상풍속이 빨라지는 경향을 가진다. 그리고 기후변화에 대한 풍속은 중규모의 강제력이 가장 미약한 산악지역에서 가장 민감하게 나타난다.

흙페인트의 적절한 사용을 위한 표면경도 및 발수성에 관한 연구 (Surface Hardness and Water Repellet of Earth Paint)

  • 황혜주;노태학;이진실
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.83-88
    • /
    • 2016
  • Purpose : This study aimed to verify the surface hardness and water repellency of earth paint manufactured with earth, a natural material, and provide the results as basic data for paint made with natural materials. Method : After presenting the accurate manufacturing methods for basic materials for paint, the authors conducted and analyzed experiments to evaluate surface hardness and water repellency, fundamental performance indicators for paint, based on different mixture ratios. From the results of the experiment to assess the surface hardness of flour-based earth paint, we observed high surface hardness only after painting the specimen three times. Since potato starch-based earth paint has higher viscosity than its flour-based counterpart, the former did not paint well on the first occasion, resulting in low surface hardness. After painting two or more times, however, it was observed to have higher surface hardness than flour-based earth paint. Result : It was found that at least three iterations of painting was required to obtain high surface hardness of potato starch-based earth paint. Furthermore, the results of the water resistance experiment of earth paint suggest that the use of environment-friendly finishing materials coupled with boiled linseed oil will mitigate the drawbacks of earth paint. The experiment with one-year-old specimens also demonstrated similar water repellent characteristics, which indicates that the performance will improve once the paint has dried for a sufficient period of time.

흙과 모래의 최밀충전효과와 석회복합체의 첨가에 따른 강도 증진 (Increasing the Strength with Earth and Soil through Optimum Micro-filler Effect and Lime Composite Addition)

  • 황혜주;노태학;강남이
    • KIEAE Journal
    • /
    • 제11권4호
    • /
    • pp.95-101
    • /
    • 2011
  • Earth has been used as a building material not only our country but also many foreign countries in the world. In foreign countries, we can often find the high-storied earthen houses which have been maintained for over several hundred years, which means the fact that earth differs in durability according to the methods of utilizing earth. So, the purpose of this study is to progress the fundamental research for utilizing earth as a wall material. Also, the another purpose of this study is to utilize the optimum micro-filler effect which adjusts the grain size of earth and the lime composite which promotes chemical combining power, and so examine whether earth material ensures its high compressive strength. This study applied both of rammed earth method and pour earth method among earth architecture methods. This study investigated compressive strength, slump, and air content according to unit binder weight. On the basis of such experimental results, this study derived the following conclusions. 1) Optimum micro-filler mixtures reduce a lot of fine particles contained in earth. If optimum micro-filler mixtures are used as aggregates, they develop lower W/B and relatively higher strength than general earth. 2) In this study, which uses optimum micro-filler earth mixtures and lime composite, rammed earth method develops 29MPa and pour earth method develops 28MPa in 28 days compressive strength. Such strengths can be utilized in building walls.

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF