• Title/Summary/Keyword: earth and space

Search Result 1,812, Processing Time 0.027 seconds

TRIFLE DIFFERENCE APPROACH TO LOW EARTH ORBITER PRECISION ORBIT DETERMINATION

  • Kwon, Jay-Hyoun;Grejner brzezinska, Dorota-A.;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A precise kinematic orbit determination (P-KOD) procedure for Low Earth Orbiter(LEO) using the GPS ion-free triple differenced carrier phases is presented. Because the triple differenced observables provide only relative information, the first epoch's positions of the orbit should be held fixed. Then, both forward and backward filtering was executed to mitigate the effect of biases of the first epoch's position. p-KOD utilizes the precise GPS orbits and ground stations data from International GPS Service (IGS) so that the only unknown parameters to be solved are positions of the satellite at each epoch. Currently, the 3-D accuracy off-KOD applied to CHAMP (CHAllenging Min-isatellite Payload) shows better than 35 cm compared to the published rapid scientific orbit (RSO) solution from GFZ (GeoForschungsZentrum Potsdam). The data screening for cycle slips is a particularly challenging procedure for LEO, which moves very fast in the middle of the ionospheric layer. It was found that data screening using SNR (signal to noise ratio) generates best results based on the residual analysis using RSO. It is expected that much better accuracy are achievable with refined prescreening procedure and optimized geometry of the satellites and ground stations.

THE EFFECTS OF PLANETARY ROTATION ON THE EXOSPHERIC DENSITY DISTRIBUTIONS OF THE EARTH AND MARS

  • KIM YONG HA;SON SUJEONG
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • We investigate the effects of planetary rotation on the exospheres of the earth and Mars with simple collisionless models. We develope a numerical code that computes exospheric densities by integrating velocity functions at the exobase with a 10 point Gauss method. It is assumed in the model that atoms above the exobase altitude move collisionlessly on an orbit under the planet's gravity. Temperatures and densities at the exobase over the globe are adopted from MSIS-86 for the earth and from Bougher et al's MTGCM for Mars. For both the earth and Mars, the rotation affects the exospheric density distribution significantly in two ways: (1) the variation of the exospheric density distribution is shifted toward the rotational direction with respect to the variation at the exobase, (2) the exospheric densities in general increase over the non-rotating case. We find that the rotational effects are more significant for lower thermospheric temperatures. Both the enhancement of densities and shift of the exospheric distribution due to rotation have not been considered in previous models of Martian exosphere. Our non-spherical distribution with the rotational effects should contribute to refining the hot oxygen corona models of Mars which so far assume simple geometry. Our model will also help in analyzing exospheric data to be measured by the upcoming Nozomi mission to Mars.

  • PDF

Two-Site Optical Observation and Initial Orbit Determination for Geostationary Earth Orbit Satellites

  • Choi, Jin;Choi, Young-Jun;Yim, Hong-Suh;Jo, Jung-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.337-343
    • /
    • 2010
  • Optical observation system provides angle-only measurement for orbit determination of space object. Range measurement can be directly acquired using laser ranging or tone ranging system. Initial orbit determination (IOD) by using angle- only data set shows discrepancy according to the measurement time interval. To solve this problem, range measurement data should be added for IOD. In this study, two-site optical observation was used to derive the range information. We have observed nine geostationary earth orbit satellites by using two-site optical observation system. The determination result of the range shows the accuracy over 99.5% compared to the results from the satellite tool kit simulation. And we confirmed that the orbit determination by the Herrick-Gibbs method with the range information obtained from the two-site observation is more accurate than the orbit determination by Gauss method with the one-site observation. For more accurate two-site optical observation, a baseline should satisfy an optimal condition of length and more precise observation system needed.

A New Era of Space Shuttle

  • Sun Kyu Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • The U.S. Space Shuttle represents the beginning of a new era in transportation and is the critical element in the industrialization of the near-Earth-space. Most of its flights are dedicated to reducing costs launching commercial satellites. However, it provides a microgravity environment for processing unique and improved materials which is generating great interest in both civilian and military sectors. The space shuttle is also the necessary step in establishing a permanent space station which could host materials analysis laboratories and commercial processing facilities. This paper reviews the different elements of the space shuttle transportation system, a typical mission scenario, and discusses current activities in materials processing in space.

  • PDF

NEAR-IR PHOTOMETRIC PROPERTIES OF HB, MSTO, AND SGB FOR METAL POOR GALACTIC GLOBULAR CLUSTERS

  • Kim, J.W.;Kang, A.;Shin, I.G.;Chun, S.H.;Sohn, Y.J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • We report photometric features of the HB, MSTO, and SGB for a set of metal-poor Galactic globular clusters on the near-IR CMDs. The magnitude and color of the MSTO and SGB are measured on the fiducial normal points of the CMDs by applying a polynomial fit. The near-IR luminosity functions of horizontal branch stars in the classical second parameter pair M3 and M13 indicate that HB stars in M13 are dominated by hot stars that are rotatively faint in the infrared, whereas HB stars in M3 are brighter than those in M13. The luminosity functions of HB stars in the observed bulge clusters, except for NGC 6717, show a trend that the fainter hot HB stars are dominated in the relatively metal-poor clusters while the relatively metal-rich clusters contain the brighter HB stars. It is suggestive that NGC 6717 would be an extreme example of the second-parameter phenomenon for the bulge globular clusters.

BV CCD Photometric Observation of AW Cam

  • Lee, Jin-Soon-;Kang, Young-Woon
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.14.1-14
    • /
    • 1993
  • BV observation of AW Cam (BD.69'0389, HD48049, Bv412) have been carried outusing a CCD Camera attached to 61-cm telescope, at Sobaek mountain Astronomical Observatory. BD 159'0385 were employed for the comparison. A total of 350obserrations were obtained during 3 nights between Jan. 28 and Feb. 19 1993. The light curve have been analyzed by the method of Wilson and Devinney different ialcorrection. The results were compared with the previous solutions.

  • PDF

Construction of the image database of Earth's lava caves useful in identifying the lunar caves

  • Hong, Ik-Seon;Jeong, Jongil;Sohn, Jongdae;Oh, Suyeon;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.138.2-138.2
    • /
    • 2012
  • Cave on the Moon is considered as the most appropriate place for human to live during the frontier lunar exploration. While the lava flows, the outer crust gets cooled and solidified. Then, the empty space is remained inside after lava flow stops. Such empty space is called the lava caves. Those lava tubes on the Earth are formed mostly by volcanic activity. However, the lava tubes on satellite like Moon and planet like Mars without volcanic activity are mostly formed by the lava flow inside of the crater made by large meteorite impact. Some part of lava tube with collapsed ceiling appears as the entrance of the cave. Such area looks like a deep crater so called a pit crater. Four large pit craters with diameter of > 60 m and depth of > 40 m are found without difficulty from Kaguya and LRO mission image archives. However, those are too deep to use as easily accessible human frontier base. Therefore, now we are going to identify some smaller lunar caves with accessible entrances using LRO camera images of 0.5 m/pixel resolution. Earth's lava caves and their entrances are well photographed by surface and aerial camera in immense volume. Thus, if the image data are sorted and archived well, those images can be used in comparison with the less distinct lunar cave and entrance images due to its smaller size. Then, we can identify the regions on the Moon where there exist caves with accessible entrances. The database will be also useful in modeling geomorphology for lunar and Martian caves for future artificial intelligence investigation of the caves in any size.

  • PDF