• 제목/요약/키워드: earth's core

Search Result 144, Processing Time 0.021 seconds

Possibility of S, O, Si and K in the Earth's Core Composition and its Problems

  • Lee, Han-Yeang
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.48-51
    • /
    • 2004
  • The light element candidates such as S, O, Si, and K are discussed for the reasonable compositions in the earth's core since the available data show density difference from pure iron core. These candidates are favored by the some evidences such as depletion in the crust and mantle, and lower eutectic temperature of Fe-FeS melt for sulfur. FeO phase for oxygen, lighter mass than sulfur and solubility in metallic phases for silicon, and partitioning in Fe-FeS melt for potassium. However, other problems such as short experimental data, initial compositions of these elements, and oxidation state during the formation of the earth should be solved simultaneously to confirm these light elements.

Technical Essentials of the Earth's Free Oscillation Mode Computation

  • Chung, Tae-Woong;Shin, Jin-Soo;Na, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.427-441
    • /
    • 2017
  • Theory of Earth's free oscillation is revisited. Firstly, we summarized the underlying formulations, such as the equation of motion and its conversion into numerically integrable form and then explained computational procedures including the treatment of inner core-outer core boundary and core-mantle boundary, while the latter information has not been explicitly given in most publications. Secondly, we re-calculated the periods of Earth's free oscillation modes (period >200 s) for PREM model. In doing so we acquired the values of modes missing in Dziewonski and Anderson (1981). As a case observation, one seismogram after 2011 Tohoku earthquake recorded at Daejeon, Korea (KIGAM seismic station) was briefly analyzed to identify free oscillation mode excitations on its spectra. The material in this article will be most clear guide for those on calculating the Earth's free oscillation mode.

Chandler Wobble and Free Core Nutation: Theory and Features

  • Na, Sung-Ho;Roh, Kyoung-Min;Cho, Jungho;Yoo, Sung-Moon;Choi, Byungkyu;Yoon, Hasu
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • Being a torque free motion of the rotating Earth, Chandler wobble is the major component in the Earth's polar motion with amplitude about 0.05-0.2 arcsec and period about 430-435 days. Free core nutation, also called nearly diurnal free wobble, exists due to the elliptical core-mantle boundary in the Earth and takes almost the whole part of un-modelled variation of the Earth's pole in the celestial sphere beside precession and nutation. We hereby present a brief summary of their theories and report their recent features acquired from updated datasets (EOP C04 and ECMWF) by using Fourier transform, modelling, and wavelet analysis. Our new findings include (1) period-instability of free core nutation between 420 and 450 days as well as its large amplitude-variation, (2) re-determined Chandler period and its quality factor, (3) fast decrease in Chandler amplitude after 2010.

Geomechanical analysis of elastic parameters of the solid core of the Earth

  • Guliyev, Hatam H.
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • It follows from the basic principles of mechanics of deformable solids relating to the strength, stability and propagation of elastic waves that the Earth's inner core cannot exist in the form of a spherical structure in the assumed thermobaric conditions and calculation values of physico-mechanical parameters. Pressure level reaches a value that is significantly greater than the theoretical limit of medium strength in the model approximations at the surface of the sphere of the inner core. On the other hand, equilibrium state of the sphere is unstable on the geometric forming at much lower loads under the influence of the "dead" surface loads. In case of the action of "follower" loads, the assumed pressure value on the surface of the sphere is comparable with the value of the critical load of "internal" instability. In these cases, due to the instability of the equilibrium state, propagation of homogeneous deformations becomes uneven in the sphere. Moreover, the elastic waves with actual velocity cannot propagate in such conditions in solid medium. Violation of these fundamental conditions of mechanics required in determining the physical and mechanical properties of the medium should be taken into account in the integrated interpretations of seismic and laboratory (experimental) data. In this case, application of the linear theory of elasticity and elastic waves does not ensure the reliability of results on the structure and composition of the Earth's core despite compliance with the required integral conditions on the mass, moment of inertia and natural oscillations of the Earth.

Thermal Analysis for Design of Propulsion System Employed in LEO Earth Observation Satellite

  • Han C.Y.;Kim J.S.;Lee K.H.;Rhee S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.248-250
    • /
    • 2003
  • Thermal analysis is performed to protect the propulsion system of low-earth-orbit earth observation satellite from unwanted thermal disaster like propellant freezing. To implement thermal design adequately, heater powers for the propulsion system estimated through the thermal analysis are decided. Based on those values anticipated herein, the average power for propulsion system becomes 22.02 watts when the only one redundant catalyst bed heater is turned on. When for the preparation of thruster firing, 25.93 watts of the average power is required. All heaters selected for propulsion components operate to prevent propellant freezing meeting the thermal requirements for the propulsion system with the worst-case average voltage, i.e. 25 volts.

  • PDF

HAMILTONIAN OF A SECOND ORDER TWO-LAYER EARTH MODEL

  • Selim, H.H.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.49-60
    • /
    • 2007
  • This paper deals with the theory for rotational motion of a two-layer Earth model (an inelastic mantle and liquid core) including the dissipation in the mantle-core boundary(CMB) along with tidal effects produced by Moon and Sun. An analytical solution being derived using Hori's perturbation technique at a second order Hamiltonian. Numerical nutation series will be deduced from the theory.

Potential Use of MODIS Satellite Data for Studying the Earth Environment (지구환경 연구를 위한 MODIS 위성자료의 활용 가능성)

  • Park, Seon-Ki
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.138-140
    • /
    • 2001
  • The Earth, along with its major components - land, atmosphere, and oceans, is at the core of the global environmental system. Changes in any component of the Earth thus strongly affect the global and regional environment. With the advent of the new century, many important decisions on agricultural, industrial, societal and political problems will depend upon the Earth's environment. Monitoring the Earth is thus important to capture any sign from the Earth which might be related to the environmental change. (omitted)

  • PDF

A Study of the Oxyhydroxide Presence at the Earth Core (지구 핵에 수산화물의 존재에 관한 연구)

  • Kim, Young-Ho;Do, Jae-Ki;Hwang, Gil-Chan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.415-423
    • /
    • 2008
  • Earth outer core is composed of iron mainly with some diluent elements, which account for the observed ca. 10% density deficit compared to the pure iron. Among candidates as the light diluents, hydrogen and oxygen were selected, and the thermodynamic stability of the following reaction was calculated; hematite + hydrogen $\to$ goethite + iron. At ambient conditions, Gibb's free energy of this reaction is 12.62 kJ/mol. On increasing pressure at room temperature, it decreases to zero at 0.068 GPa. This energy decreases at constant rate down to 200 GPa, which shows -208.26 kJ/mol at that pressure. From these results, this chemical reaction prefers the reduction environment forming the iron element and iron oxyhydroxide, so possible presence of iron oxyhydroxide with iron at proto-core can not be ruled out.

Discovery of 500-day period component in the Earth's polar motion

  • Na, Seong-Ho;Jo, Jeong-Ho;Baek, Jeong-Ho;Gwak, Yeong-Hui;Park, Pil-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2010
  • Earth's polar motion has been known for more than one century, and it has been monitored by astrometric observation and recently by space geodetic technique. The Chandler and the annual wobbles are two dominant parts of Earth's polar motion. But according to our recent analysis on a relevant and accurate dataset, another polar motion component, of which period is about 500 days, exists with an amplitude of 20 milliarcseconds in average. This third largest component of polar motion should be caused by resonance of unidentified oscillating mode of Earth, possibly Earth's inner core wobble.

  • PDF

The Sources of Preservice Secondary Teachers' Explanations about Seasonal Changes Investigated with the Lakatosian Methodology (Lakatos의 방법론에 의한 예비 중등 교사의 계절 변화에 대한 설명의 근원 연구)

  • Oh, Jun-Young;Kang, Yong-Hee;Lee, Hyo-Nyong;Kim, Yong-Gi
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.374-389
    • /
    • 2006
  • The purpose of this study was to investigate the alternative models of seasonal changes that preservice secondary teachers presented using the Lakatosian methodology. Participants included 74 undergraduate students who majored in science education within the college of education. Their responses to these questions revealed students' alternative models were inconsistent with scientific models. A great deal of this apparent inconsistency could be explained by assuming that the students used, in a consistent fashion, a alternative core belief on seasonal changes. This study also discussed the core beliefs and the possible sources held by preservice teachers in order to overcome their alternative models. The sources of alternative models may lie in the contents used in textbooks.