• Title/Summary/Keyword: early-age shrinkage

Search Result 151, Processing Time 0.024 seconds

Volumetric Change of Concrete Subjected to Different Curing Condition (양생 조건에 따른 콘크리트의 체적 변화)

  • Lee Kwang Myong;Lee Hoi Keun;Lee Sung Jin;Baek Biehn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.132-135
    • /
    • 2004
  • High-performance concrete (HPC) may be expected to differ from usual concrete with respect to shrinkage behavior, and it shows high autogenous shrinkage due to the use of very low water-binder ratio (w/b) and various admixtures. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structure, volumetric change of HPC should be understood. In this study, small prisms made of HPC with w/b of 0.32 and blast-furnace slag content of $0\%,\;30\%,\;and\;50\%$ were prepared to measure the volumetric changes such as autogenous shrinkage, drying shrinkage, and swelling under three different curing conditions. It was observed that the concrete cured. sealed condition showed only autogenous shrinkage while the concrete let to dry condition at temperature of $20^{\circ}C$ and relative humidity of $60\%$ during the test period showed both autogenous and drying shrinkage. Moreover, the concrete exposed to dry condition after 2-day water curing swelled and then started to shrink with age. The total shrinkage (autogenous+drying) of this concrete was smaller than that of the concrete cured dry condition, especially at early-age. Therefore, the early-age moisture curing is very effective to control or minimize the volumetric change and its induced stress of HPC.

  • PDF

Evaluation of Thermal and Shrinkage Stresses in Hardening Concrete Considering Early-Age Creep Effect (초기재령 콘크리트의 크리프를 고려한 온도 및 수축응력 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.382-391
    • /
    • 2002
  • This study is devoted to the problems of thermal and shrinkage stresses in order to avoid cracking at early ages. The early-age damage induced by volume change has great influence on the long-term structural performance of the concrete structures such as its durability and serviceability To solve this complex problem, the computer programs for analysis of thermal and shrinkage stresses were developed. In these procedures, numerous material models are needed and the realistic numerical models have been developed and validated by comparison with relevant experimental results in order to solve practical problems. A framework has been established for formulation of material models and analysis with 3-D finite element method. After the analysis of the temperature, moisture and degree of hydration field in hardening concrete structure, the stress development is determined by incremental structural formulation derived from the principle of virtual work. In this study, the stress development is related to thermal and shrinkage deformation, and resulting stress relaxation due to the effect of early-age creep. From the experimental and numerical results it is found that the early-age creep p)ays important role in evaluating the accurate stress state. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and shrinkage stresses and to find measures for avoiding detrimental cracking of concrete structures at early ages.

Basic Creep Model by Considering Autogenous Shrinkage

  • Lee, Yun;Kim, Jin-Keun;Kim, Min-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Basic creep of concrete during very early ages is an important factor on the behavior of young concrete and a great deal of research has been executed. However, in recent studies, it was revealed that the basic creep measured by sealed concrete was inaccurate, especially for high strength concrete because of autogenous shrinkage at early age. This paper presents the results from experimental study that investigate to explore the effect of autogenous shrinkage in basic creep. More specifically, four different mix proportions were casted and the primary variables were water-cement ratios. Through this research, it was found that the differences between apparent specific creep and real specific creep were remarkable in low water-cement ratio at early age. Therefore, it is recommended to modify existing creep model by considering autogenous shrinkage

  • PDF

Autogenous Shrinkage of Very-Early Strength Latex-Modified Concrete with Retarder Contents (지연제 함량 변화에 따른 초속경 라텍스개질 콘크리트(VES-LMC)의 자기수축)

  • Choi, Pan-Gil;Yun, Kyong-Ku;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-194
    • /
    • 2009
  • The autogenous shrinkage of high-performance concrete, including very-early strength latex-modified concrete(VES-LMC), is generally bigger than that of normal strength concrete because of the low water/cement ratio, high binder contents, and usage of superplasticizer. Mix. proportion of VES-LMC has low water/cement ratio(0.38), high cement content(390kg/m$^3$), and aid of latex(15% of cement weight). Thus, these factors of VES-LMC, rapid water self-dissipation and evaporation within 3 hours of concrete placement would increase the autogenous shrinkage. The purpose of this study was to evaluate the early-age shrinkage, thermal deformation and autogenous shrinkages of VES-LMC with retarder contents(retarder solids-cement ratio, by weight) using to secure working time in field. The experimental results showed that retarder contents do not affect of the maximum hydration temperature. Early-age expansion of VES-LMC was mostly caused by thermal expansion and partly by autogenous expansion. The autogenous shrinkage is decreased by increasing the retarder contents within this study. On the other hand, the usage of retarder should be decided carefully considering the field conditions because an excessive usage of retarder can cause handful early-age expansion.

  • PDF

Shrinkage Properties of High Strength Concrete According to S/A in Early Age (초기 재령에서 잔골재율의 변화에 따른 고강도 콘크리트의 수축특성)

  • 박신일;전철송;임병호;이승훈;손상현;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1135-1140
    • /
    • 2001
  • The purpose of this study is to investigate the shrinkage properties of high strength concrete according to the S/A ratio at early age. The main parameters are as follows : S/A ratio is 30, 35, 38, 41, 45%, W/B ratio 24.9%, SF/B ratio 8%. FA/B 15%. The size of specimen is l0$\times$10$\times$40cm and the shrinkage is measured by the embedded gage at each end of the specimens. From the test, it was found that the slump-flow of concrete was high, and also autogenous shrinkage increased and drying shrinkage decreased as S/A ratio increased.

  • PDF

A Study on Early Age Shrinkage of Concrete using Recycled Aggregate (재생골재를 사용한 콘크리트의 초기재령 수축에 관한 연구)

  • Koo, Bong-Kuen;Seo, Sang-Gu;Rha, Jae-Woong;Park, Jae-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2003
  • Cracks in reinforced concrete structures reduce overall durability by allowing the penetration of water and aggressive agents, thereby accelerating the deterioration of the reinforcing steel. Highway pavement and bridge decks are especially susceptible to this type of deterioration since these structures exhibit high rates of shrinkage and are frequently exposed to aggressive environmental conditions. The objectives of this investigation included the development of experimental procedures for assessing shrinkage cracking potential of recycled aggregate concrete, the evaluation of mix composition on shrinkage cracking potential, and the development of theoretical models to simulate early-age cracking behavior. Specifically, the influences of shrinkage-reducing admixture(SRA) and recycled aggregate concrete were investigated. The shrinkage-reducing admixture substantially reduces free shrinkage and restrains shrinkage cracking while providing similar mechanical properties. A fracture mechanics modeling approach was developed to predict the behavior of a variety of restrained concrete specimens. This modeling approach was used to successfully explain experimental results from a variety of mixture compositions. The model was used to demonstrate the influence of material and structural properties on the potential for cracking.

Analysis of Axial Restrained Behavior of Early-Age Concrete Using Sea-Sand (해사를 사용한 초기재령 콘크리트의 일축 구속 거동 해석)

  • 박상순;송하원;조호진;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2002
  • In this paper, finite element analysis is applied for simulation of cracks due to restraining autogenous and drying shrinkage at early-age concrete. A micro-level heat hydration model and a shrinkage prediction model along with a moisture diffusion model are adopted for the finite element analysis. Then, an axial restraint test is carried out for concrete specimens containing different amounts of chloride ions to evaluate stress development and cracking due to the restraining shrinkages at early ages. Test results show that the increase of contents of chloride ions increases restrained stress, but does not increase strength. By this increase of shrinkage strain at early-age, time to occur the crack is accelerated. Finally, stress development and cracking of concrete specimens containing different amount of chloride ions we simulated using the finite element analysis. Results of the analysis using the Proposed model are verified by comparison with test results.

Multi-physics Model of Moisture Related Shrinkage on Lightweight and Normal Concrete (경량콘크리트 및 일반콘크리트의 수분관련 수축에 대한 다중물리모델)

  • Lee, Chang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.159-169
    • /
    • 2010
  • A multiphysics model analysis including moisture transport, heat transfer and solid mechanics and experiments on the normal and light weight concrete were carried out in order to study the effect of preabsorbed water in the light weight aggregates on the drying and shrinkage characteristics of concrete. Consequently, with fixed water-cement ratio, loss of water content of normal and light weight concrete were compared and the results showed that the lightweight concrete lost less moist than the normal concrete in early age and long term which was by moist supply effect. Accordingly, shrinkage strain size and distribution of lightweight concrete were decreased, and shrinkage reducing effect was efficient in early age with water cement ratio 0.3 and in both early age, and long term with water cement ratio 0.5. The comparison of analysis results and exaperimental results indicate that characteristic values of moisture transport and the relation humidity and shrinkage strain from this study are resonable for application for other differential shrinkage analysis in lightweight concrete.

Early Age Shrinkage by Self-Desiccation in Ultra-High-Strength Concrete

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.469-470
    • /
    • 2010
  • The high-strength concrete(HSC) compared to normal concrete represents higher autogenous shrinkage due to lower water-to-binder ratio(W/B) and supplementaries, fly ash(FA) and granulated blast-furnace slag(BFS), etc. The potential of early age cracking which reduces durability of concrete structures is normally influenced by autogenous shrinkage and degree of restraint. Therefore, this paper studies on the evaluation of the characteristics of autogenous shrinkage for HSC, ultra-high-strength concrete(UHSC) containing admixtures by experimental test and the test results are compared with existed prediction models.

  • PDF