• Title/Summary/Keyword: early-age

Search Result 4,769, Processing Time 0.031 seconds

Field Investigation into Early Age Behavior of Joint Plain Concrete Pavement

  • Park, Dae-Geun;Suh, Young-Chan;Kim, Hyung-Bae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1053-1060
    • /
    • 2003
  • The temperature variation of the concrete pavement in the early age significantly affects the initiation and propagation of its early age cracks. This implies that the measurement and analysis of early age temperature trend are necessary to examine the causes of early age cracks in the concrete pavement. In this study, it is investigated how the early age temperature trend in the concrete pavement affects the random crack initiation and behaviors of saw-cut joints using the actual construction site which is located at the KHC test road. During 72 hours after placing the concrete pavement, the ambient air temperature and temperatures at the top, middle, and bottom in the concrete pavement were measured and the random crack initiation in concrete slabs and early age behaviors in the joints were surveyed. The investigation results indicate that the first random crack was initiated at one of the slabs placed in the early morning which have higher temperature changes during early 72 hours. In addition, the joints that were saw-cut in the morning were cracked more rapidly than those saw-cut in the afternoon.

  • PDF

Compressive Basic Creep Prediction in Early-Age Concrete (초기재령 콘크리트의 압축 기본크리프 예측)

  • 김성훈;송하원;변근수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.285-288
    • /
    • 1999
  • Creep is a major parameter to represent long-term behavior of concrete structures concerning serviceability and durability. The effect of creep is recently taking account into crack resistance analysis of early-age concrete concerning durability evaluation. Since existing creep prediction models were proposed to predict creep for hardened concrete, most of them cannot consider effectively the information on microstructure formation and hydration developed in the early-age concrete. In this study, creep tests for early-age concrete made of the type I cement and the type V cement are carried out respectively and creep prediction models are evaluated for the prediction of creep behavior in early-age concrete. A creep prediction model is modified for the prediction of creep in early-age concrete and also verified by comparing prediction results with results of creep tests on early-age concrete.

  • PDF

Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete (초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

Autogenous Shrinkage of VES-LMC considering Hydration-Heat (VES-LMC의 열 특성을 고려한 자기수축)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.73-80
    • /
    • 2005
  • Durability of concrete structures is seriously compromised by cracking at early-age concretes, particularly in high-strength or high-performance concrete structures. Since early-age cracking is influenced by various factors that affect the hydration process, early-age shrinkage and stress/strain development, the behavior at early-age is highly complex and no rational methodologies for its control have yet been established. Concrete structures often present volumetrical changes particularly due to thermal and moisture related shrinkages. Volumetric instability is detrimental to the performance and durability of concrete structures because structural elements are usually restrained. These restrained shrinkages develope tensile stresses which often results in cracking in combination with the low fracture resistance of concrete. Early-age defects in high-performance concrete due to thermal and autogenous deformation shorten the life cycle of concrete structures. Thus, it is necessary to examine the behavior of early-age concrete at the stages of design and construction. The purpose of this study was to propose a shrinkage models of VES-LMC (very-early strength latex-modified concrete) at early-age considering thermal deformation and autogenous shrinkage.

  • PDF

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

Early-Age Properties of Polymer Fiber-Reinforced Concrete

  • Myers, Daniel;Kang, Thomas H.K.;Ramseyer, Chris
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • The cracking problem in concrete is widespread and complex. This paper reviews the problem and focuses on those parts of the problem that are more readily solved. Polymer fibers are shown to have promise in several important areas of the cracking problem. To investigate one of these areas of the cracking problem more completely, an experimental research program focusing on the early-age properties of fibers was carried out. This study researched the properties of four polymer fibers; two of the fibers were macrofibers, and two were microfibers. Each fiber was tested at several dosage rates to identify optimum dosage levels. Early-age shrinkage, long-term shrinkage, compressive strength, and tensile strength were investigated. Long-term shrinkage and strength impacts from the polymer fibers were minimal; however, the polymer fibers were shown to have a great impact on early-age shrinkage and a moderate impact on early-age strength.

Study on the Characteristics of Height Growth by PHV Age -Using longitudinal data of age 7 to 18- (PHV 연령별 신장 발육의 특징에 관한 연구 -7~18세의 종단적 자료를 이용하여-)

  • Park, Ju-Mi;Kim, Myung
    • Korean Journal of Health Education and Promotion
    • /
    • v.8 no.2
    • /
    • pp.74-86
    • /
    • 1991
  • This study tried to clear the characteristics of height growth pattern depending on Peak Height Velocity age in early, average and late groups. And in it, height growth tendency of girl students in age 7 to 18 years old was compared and investigated in order to know influencing factors, menarcheal age relation. The samples were senior girl students at high school in Seoul. Longitudinal data and survey data were collected in August, 1990. The results could be summarized as follows: 1. On distance curve, the height growth line in early group tended to be the highest and in late group the lowest. On the other hand, on velocity curve late group showed the highest peak and early group showed the lowest peak. In late group, velocity curve was too steep. Of course, these early, average and late groups were classified by PHV age. 2. In these three groups, late group showed the most growth amount per year. However, on distance curve, early group showed higher line than late group. Perhaps this means that peak growth amount in late group might have an effect on mean. 3. Growth amount of adolescence spurt age in these three groups was 6.86cm at age 9(early group), 7.27cm at l1(average group) and 7.65cm at 13(late group). In early group, because. PHV age came too early, it was difficult to find exact adolescence spurt period. In early group, the adolescence spurt period is considered to come at about age 7 to 9. In average group, at 9 to 11 and at 12 to 13 in late group. Especially, spurt of late group was remarkable. 4. When the growth amount of PA, before PA and after PA was compared, growth amount of PA in all three groups was about 20%. In early group, growth amount of APV tended to be large and in late group, that of APV tended to be large and in late group, that of BPV was large. In average group, growth amount of BPV was larger than that of APV. 5. For the purpose of comparing total height growth amount of these groups at age 18, the height growth was assumed to be over. And then, the difference of three groups was studied but it's not significant. 6. Although the difference between height growth and family environment, dietary habits, exercise, disease history in these three groups was investigated, only the income was significant. The significance of all the other factors was not approved. 7. When menarcheal age was compared with PA, generally we know menarche appeared after 1∼2 years of PHV age. But in case of early group, the difference between PHV age and menarcheal age was 5.34 years. In average group, 2.45 years and 0.82 years in late group.

  • PDF

Analysis of Early-Age Concrete Through Instrumentation During Construction (시공중 계측을 통한 초기 콘크리트의 거동분석)

  • 오병환;최성철;신준호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.795-798
    • /
    • 2002
  • Recently. the properties of early-age concrete are increasingly important because these properties directly influence the behavior of early-age concrete structures including stress and cracking behavior. Nevertheless, the studies on early-age concrete are limited to strength and temperature development. The purpose of present study is to propose a simple and rational method which can predict the stress and strain behavior of young age concrete. A series of test have been done to measure the temperature development, strains and stresses in concrete members. The concept of equivalent age was used to define the degree of hydration and this degree of hydration was used to calculate the strength and elastic modulus. The present study indicates that the calculated stresses correlate fairly well with measured stresses. The consideration of critical degree of hydration in calculating stresses gives more accurate results. The present study provides useful method and data in evaluating early-age behavior of concrete structure.

  • PDF

Early Age Cracking Analysis of Massive Concrete Base Slab with Enhanced Microplane Model (개선된 미소면 모델을 적용한 매스콘크리트 기초슬래브의 초기균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Woo, Sang-Kyun;Song, Young-Chul;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.458-461
    • /
    • 2006
  • Early age cracking of concrete is a widespread and complicated problem, and diverse applications in practical engineering have focused on this issue. Since massive concrete base slab composes the infrastructure of other concrete structures such as pier, concrete dam, and high rise buildings, early age cracking of that is considered as a crucial problem. In this study, finite element analysis (FEA) implemented with the age-dependent microplane model was performed. For a massive concrete base slab, cracking initiation and propagation, and deformation variation were investigated with concrete age. In massive concrete slab, autogenous shrinkage increases the risk of early age cracking and it reduces reinforcement effect on control of early age cracking. Gradual crack occurrence is experienced from exterior surface towards interior of the slab in case of combined hydration heat and autogenous shrinkage. FEA implemented with enhanced microplane model successfully simulates the typical cracking patterns due to edge restraint in concrete base slab.

  • PDF

The Effectiveness of a Program in Activities for Early Students to Develop Some of the Basic Skills Needed for the Age of Artificial Intelligence

  • Adelah Abdulhamid Abdulwahab, Rajab
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.239-244
    • /
    • 2022
  • The study aimed to build a program in activities for early childhood students to develop some of the basic skills necessary for the age of artificial intelligence, to achieve the objectives of the study , the researcher used the experimental design, and the research sample consisted of 37 early childhood students. The study used the following tools: Experimental treatment subject: the proposed program in the activities, Measurement and evaluation tool: testing the basic skills needed for the age of artificial intelligence. The study concluded several results: There is a statistically significant difference (α≤0.05) between the average grades of the early childhood students in the research group in the tribal and remote measurements to test the basic skills necessary for the age of artificial intelligence in favor of the students grades in the dimensional measurements. Practical application of the study through benefiting from the proposed program of activities prepared in the current study in planning and implementing activities to develop the basic skills necessary for the age of artificial intelligence among early childhood students.